Assume that one runs a model using the bayes prefix. This model includes also a large number of indicators apart from some standard controls.
I am wondering if there is a way not to have the results of the indicators shown at all in the Stata output.
I will will present a minimal working example.
Code:
input id year y x1 x2 1 1990 0.765290722 0.786241262 0.783572146 1 1991 0.611380163 0.739519495 0.60693537 1 1992 0.590601317 0.490306934 0.479196734 1 1993 0.708316766 0.97180118 0.40444494 1 1994 0.587700824 0.442869206 0.399139847 1 1995 0.092595406 0.475633824 0.055023827 2 1990 0.995706082 0.356060781 0.242968298 2 1991 0.688079045 0.36475865 0.829626742 2 1992 0.564536023 0.219309875 0.59165049 2 1993 0.728154736 0.370715204 0.319482427 2 1994 0.972550408 0.331836688 0.495801468 2 1995 0.907903102 0.643605887 0.04147437 3 1990 0.666757644 0.604741524 0.892619352 3 1991 0.945322031 0.076470116 0.83826142 3 1992 0.262225766 0.622579231 0.738801605 3 1993 0.14160545 0.420033382 0.883489729 3 1994 0.674649086 0.287176323 0.798404419 3 1995 0.462505639 0.782454944 0.206593929 4 1990 0.103318329 0.860360564 0.384564281 4 1991 0.892686701 0.387916868 0.911908676 4 1992 0.23782402 0.403880512 0.962117085 4 1993 0.733468764 0.376152156 0.237543589 4 1994 0.925702313 0.438672271 0.103990407 4 1995 0.309275933 0.771466795 0.119082256 end
Code:
bayes, rseed(12345) : reg y x1 x2 i.id i.year
Code:
Bayesian linear regression                       MCMC iterations  =     12,500
Random-walk Metropolis-Hastings sampling         Burn-in          =      2,500
                                                 MCMC sample size =     10,000
                                                 Number of obs    =         24
                                                 Acceptance rate  =       .327
                                                 Efficiency:  min =    .003156
                                                              avg =    .006709
Log marginal likelihood = -74.144851                          max =     .02003
 
------------------------------------------------------------------------------
             |                                                Equal-tailed
             |      Mean   Std. Dev.     MCSE     Median  [95% Cred. Interval]
-------------+----------------------------------------------------------------
y            |
          x1 |  .0390891   .1586424   .025329   .0357585  -.2741725   .3541185
          x2 | -.3099317   .2938798   .039644  -.3094318  -.8912901   .2766925
             |
          id |
          2  |  .2899881   .1213703   .021604   .2966582   .0641597   .5389639
          3  |   .055742   .1603441   .022674   .0559719  -.2698375   .3579688
          4  | -.0549487   .1484017   .016786  -.0567729  -.3385171   .2308046
             |
        year |
       1991  |  .2982491   .1879188   .026803   .3004807  -.1168325   .6647947
       1992  | -.1464675   .1949344   .020653  -.1421357  -.5566844    .232561
       1993  | -.0215075   .1920174   .031623  -.0132725  -.4371793   .3662122
       1994  |  .1843418   .1978521   .020934    .188863  -.2352899   .5520474
       1995  | -.2889066   .2437549    .03487  -.2840871  -.7785481   .1575815
             |
       _cons |  .6705034   .2512025   .040967   .6678414   .1940561   1.183284
-------------+----------------------------------------------------------------
      sigma2 |  .0759295   .0308258   .002178   .0698249   .0363304   .1570932
------------------------------------------------------------------------------
Thank you.
0 Response to Saving parts of a model after Bayesian analysis
Post a Comment