I am running the following fixed effects regression
xtreg recycling loginc logpopden age1120 age2130 age3140 age4150 age5160 age6170 age7180 age81plus md11 md12 md13 md14 md15 md16 md17 md18 md19 md20 md21 md22 md23 md24 md25 md26 md27 md28 md29 md291 wasteavg dryavg quarter2 quarter3 quarter4 year2 year3 year4 year5, fe vce(cluster acode)
Where age1120...age81 plus are the percentages of people in each a local authority that fall into that age category (0-10 is dropped to avoid multicollinearity). I am trying to understand whether for example having more young people increases the recycling rate (which is also in percentages). How can I interpret the coefficients on age categories?
Is it correct that a 1% increase in the percentage of people aged 11-20 in that local authority it associated with -0.296% decrease in the recycling rate compared with the age 0-10 category?
My results look like this:
Fixed-effects (within) regression Number of obs = 5,862
Group variable: acode Number of groups = 311
R-sq: Obs per group:
within = 0.3716 min = 4
between = 0.1048 avg = 18.8
overall = 0.1549 max = 20
F(39,310) = 43.00
corr(u_i, Xb) = -0.5252 Prob > F = 0.0000
(Std. Err. adjusted for 311 clusters in acode)
------------------------------------------------------------------------------
| Robust
recycling | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
loginc | 12.03771 6.237323 1.93 0.055 -.2351345 24.31055
logpopden | -1.332437 2.427655 -0.55 0.583 -6.109203 3.444329
age1120 | -.2954794 .6908926 -0.43 0.669 -1.654911 1.063953
age2130 | .1885658 .6400376 0.29 0.768 -1.070802 1.447933
age3140 | .7329204 .9751467 0.75 0.453 -1.185823 2.651664
age4150 | -.3526127 1.066931 -0.33 0.741 -2.451955 1.74673
age5160 | 1.275646 .9134214 1.40 0.164 -.5216435 3.072936
age6170 | .024184 .9108853 0.03 0.979 -1.768116 1.816484
age7180 | 1.218289 .8260266 1.47 0.141 -.4070386 2.843617
age81plus | -.3917339 1.448403 -0.27 0.787 -3.241678 2.45821
md11 | .4255393 .4895818 0.87 0.385 -.5377843 1.388863
md12 | -.5535315 .4137792 -1.34 0.182 -1.367703 .2606396
md13 | -.9062759 .5197156 -1.74 0.082 -1.928892 .1163405
md14 | -.1184019 .4622045 -0.26 0.798 -1.027857 .7910528
md15 | .5687996 .58112 0.98 0.328 -.5746388 1.712238
md16 | .0920765 .7555284 0.12 0.903 -1.394536 1.578689
md17 | -.2591195 .3896524 -0.67 0.507 -1.025818 .5075785
md18 | -.051231 .5992336 -0.09 0.932 -1.230311 1.127848
md19 | -.0115919 .4511141 -0.03 0.980 -.8992246 .8760409
md20 | -1.560113 .4897158 -3.19 0.002 -2.5237 -.5965258
md21 | -1.002337 .5052073 -1.98 0.048 -1.996406 -.0082675
md22 | -1.213785 .5130708 -2.37 0.019 -2.223327 -.2042435
md23 | .1537965 .5411894 0.28 0.776 -.9110726 1.218666
md24 | .392942 .4239478 0.93 0.355 -.4412372 1.227121
md25 | .1252963 .871987 0.14 0.886 -1.590465 1.841058
md26 | .5656828 .3854658 1.47 0.143 -.1927775 1.324143
md27 | 1.367237 .367305 3.72 0.000 .6445112 2.089964
md28 | .3488904 .3075395 1.13 0.257 -.2562384 .9540191
md29 | -.0347408 .680321 -0.05 0.959 -1.373372 1.30389
md291 | .3742537 .3683196 1.02 0.310 -.3504689 1.098976
wasteavg | 1.467284 .5581088 2.63 0.009 .3691235 2.565444
dryavg | -.6221646 .6502192 -0.96 0.339 -1.901566 .6572366
quarter2 | -4.480375 .1217009 -36.81 0.000 -4.71984 -4.240911
quarter3 | -4.181014 .1181899 -35.38 0.000 -4.41357 -3.948458
quarter4 | -2.514117 .1012822 -24.82 0.000 -2.713405 -2.31483
year2 | -.3664256 .2981572 -1.23 0.220 -.9530934 .2202422
year3 | -1.513213 .5369766 -2.82 0.005 -2.569793 -.4566336
year4 | -3.069163 .9697009 -3.17 0.002 -4.977191 -1.161135
year5 | -4.18252 1.169431 -3.58 0.000 -6.483547 -1.881493
_cons | -114.9097 80.65038 -1.42 0.155 -273.6011 43.78166
-------------+----------------------------------------------------------------
sigma_u | 4.7016969
sigma_e | 2.5497095
rho | .77274705 (fraction of variance due to u_i)
------------------------------------------------------------------------------
.
Related Posts with Interpreting my results with variables for Age Categories
Minimum distance function / Stochastic Frontier AnalysisHi there: Does anyone know how to estimate a minimum distance function in Stata? I have the paramete…
Modelling longitudinal dataHello members, pleaseRegression for follow-up studies i have a data on follow up study, data was col…
Calculating month between two datesDear All, May data set contains a variable named month1 for the first month and year1 for the first …
Modelling dose with multiple balancing score. Imbens (2000)Good day statlisters , please I am interested in applying propensity using modelling dose of treatme…
Goodness of fit indices unavailable when using SEM with vce(robust), what's the reason?Hello All, I was able to find several posts asking why we can't get goodness of fit indices (RMSEA,…
Subscribe to:
Post Comments (Atom)
0 Response to Interpreting my results with variables for Age Categories
Post a Comment