I have data on incidences of poisonings in each of the 50 US states by quarter for 26 quarters. Each poisoning could result in one of
2 outcomes - no/ minor adverse medical outcome [outcome==1] or severe adverse medical outcome [outcome=2]. So the outcome is essentially binary - outcome 1 or outcome 2
. I
want to evaluate the impact of a certain government policy adopted by a subset of states [identified in the data below with variable treated==1] poisonings.
I also have, separately from the US Census, the population of each state (variable 'pop' below). My data looks as follows:Code:
* Example generated by -dataex-. To install: ssc install dataex clear input str5 state float qtr long poisonings float(total poisonings_popstd outcome post) byte treated long pop float(x1 x2 x3 x4 x5 x6) "AK" 1 20 27 2.769937 1 0 1 722038 7.733333 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 1 7 27 .9694781 2 0 1 722038 7.733333 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 2 20 29 2.769937 1 0 1 722038 7.566667 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 2 9 29 1.2464718 2 0 1 722038 7.566667 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 3 27 35 3.7394154 1 0 1 722038 7.5 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 3 8 35 1.1079749 2 0 1 722038 7.5 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 4 18 32 2.4929435 1 0 1 722038 7.466667 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 4 14 32 1.938956 2 0 1 722038 7.466667 27.7 4.545096 28.878407 .52014977 .08111796 "AK" 5 11 26 1.506026 2 0 1 730399 7.333333 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 5 15 26 2.053672 1 0 1 730399 7.333333 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 6 6 29 .8214688 2 0 1 730399 7.166667 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 6 23 29 3.148964 1 0 1 730399 7.166667 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 7 13 17 1.779849 1 0 1 730399 7.033333 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 7 4 17 .54764587 2 0 1 730399 7.033333 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 8 18 23 2.4644065 1 0 1 730399 7 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 8 5 23 .6845573 2 0 1 730399 7 27.7 4.6983337 29.19467 .5209735 .0854725 "AK" 9 16 18 2.1708307 1 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 9 2 18 .27135384 2 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 10 10 19 1.3567692 2 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 10 9 19 1.2210923 1 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 11 18 24 2.442185 1 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 11 6 24 .8140616 2 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 12 18 28 2.442185 1 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 12 10 28 1.3567692 2 0 1 737045 7 27.7 4.786403 29.4967 .5228226 .08950587 "AK" 13 7 12 .9506904 1 0 1 736307 7 27.7 4.795406 29.827 .5233248 .09415574 "AK" 13 5 12 .6790646 2 0 1 736307 7 27.7 4.795406 29.827 .5233248 .09415574 "AK" 14 16 24 2.1730065 1 0 1 736307 7 27.7 4.795406 29.827 .5233248 .09415574 "AK" 14 8 24 1.0865033 2 0 1 736307 7 27.7 4.795406 29.827 .5233248 .09415574 "AK" 15 18 24 2.4446325 1 0 1 736307 6.866667 27.7 4.795406 29.827 .5233248 .09415574 "AK" 15 6 24 .8148775 2 0 1 736307 6.866667 27.7 4.795406 29.827 .5233248 .09415574 "AK" 16 16 25 2.1730065 1 0 1 736307 6.6 27.7 4.795406 29.827 .5233248 .09415574 "AK" 16 9 25 1.2223163 2 0 1 736307 6.6 27.7 4.795406 29.827 .5233248 .09415574 "AK" 17 23 29 3.1184454 1 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 17 6 29 .8135075 2 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 18 12 27 1.627015 1 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 18 15 27 2.0337687 2 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 19 6 13 .8135075 2 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 19 7 13 .949092 1 0 1 737547 6.5 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 20 3 23 .40675375 2 0 1 737547 6.633333 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 20 20 23 2.7116916 1 0 1 737547 6.633333 27.7 4.818702 30.10442 .5234001 .09878014 "AK" 21 19 31 2.56236 1 0 1 741504 6.766667 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 21 12 31 1.6183325 2 0 1 741504 6.766667 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 22 8 18 1.0788883 2 0 1 741504 6.866667 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 22 10 18 1.3486104 1 0 1 741504 6.866667 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 23 5 27 .6743052 2 0 1 741504 7 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 23 22 27 2.966943 1 0 1 741504 7 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 24 9 20 1.2137494 2 0 1 741504 7 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 24 11 20 1.4834714 1 0 1 741504 7 27.7 4.911483 30.41499 .5231637 .10406608 "AK" 25 16 26 2.1627877 1 0 1 739786 7.033333 27.7 . . . . "AK" 25 10 26 1.3517423 2 0 1 739786 7.033333 27.7 . . . . "AK" 26 20 31 2.7034845 1 0 1 739786 7.133333 27.7 . . . . "AK" 26 11 31 1.4869165 2 0 1 739786 7.133333 27.7 . . . . "AL" 1 127 191 2.646476 1 0 0 4798834 10.166667 31 26.847376 28.9922 .4852006 .14009614 "AL" 1 64 191 1.3336573 2 0 0 4798834 10.166667 31 26.847376 28.9922 .4852006 .14009614 "AL" 2 120 183 2.5006075 1 0 0 4798834 10 31 26.847376 28.9922 .4852006 .14009614 "AL" 2 63 183 1.312819 2 0 0 4798834 10 31 26.847376 28.9922 .4852006 .14009614 "AL" 3 62 172 1.2919805 2 0 0 4798834 9.666667 31 26.847376 28.9922 .4852006 .14009614 "AL" 3 110 172 2.2922235 1 0 0 4798834 9.666667 31 26.847376 28.9922 .4852006 .14009614 "AL" 4 52 161 1.0835966 2 0 0 4798834 8.633333 31 26.847376 28.9922 .4852006 .14009614 "AL" 4 109 161 2.2713852 1 0 0 4798834 8.633333 31 26.847376 28.9922 .4852006 .14009614 "AL" 5 66 171 1.370556 2 0 0 4815564 8 31 26.951054 29.14335 .4851257 .14522338 "AL" 5 105 171 2.18043 1 0 0 4815564 8 31 26.951054 29.14335 .4851257 .14522338 "AL" 6 65 198 1.34979 2 0 0 4815564 8.2 31 26.951054 29.14335 .4851257 .14522338 "AL" 6 133 198 2.761878 1 0 0 4815564 8.2 31 26.951054 29.14335 .4851257 .14522338 "AL" 7 127 202 2.637282 1 0 0 4815564 8.066667 31 26.951054 29.14335 .4851257 .14522338 "AL" 7 75 202 1.55745 2 0 0 4815564 8.066667 31 26.951054 29.14335 .4851257 .14522338 "AL" 8 123 196 2.554218 1 0 0 4815564 7.666667 31 26.951054 29.14335 .4851257 .14522338 "AL" 8 73 196 1.515918 2 0 0 4815564 7.666667 31 26.951054 29.14335 .4851257 .14522338 "AL" 9 128 193 2.649851 1 0 0 4830460 7.4 31 27.068136 29.300863 .4850109 .14920263 "AL" 9 65 193 1.3456275 2 0 0 4830460 7.4 31 27.068136 29.300863 .4850109 .14920263 "AL" 10 104 168 2.1530042 1 0 0 4830460 7.1 31 27.068136 29.300863 .4850109 .14920263 "AL" 10 64 168 1.3249255 2 0 0 4830460 7.1 31 27.068136 29.300863 .4850109 .14920263 "AL" 11 62 169 1.2835217 2 0 0 4830460 7.133333 31 27.068136 29.300863 .4850109 .14920263 "AL" 11 107 169 2.21511 1 0 0 4830460 7.133333 31 27.068136 29.300863 .4850109 .14920263 "AL" 12 93 170 1.9252825 1 0 0 4830460 7.233333 31 27.068136 29.300863 .4850109 .14920263 "AL" 12 77 170 1.594051 2 0 0 4830460 7.233333 31 27.068136 29.300863 .4850109 .14920263 "AL" 13 87 160 1.7965997 1 0 0 4842481 7.233333 31 27.15205 29.434875 .4848089 .15354267 "AL" 13 73 160 1.5074917 2 0 0 4842481 7.233333 31 27.15205 29.434875 .4848089 .15354267 "AL" 14 76 159 1.5694435 2 0 0 4842481 7 31 27.15205 29.434875 .4848089 .15354267 "AL" 14 83 159 1.7139975 1 0 0 4842481 7 31 27.15205 29.434875 .4848089 .15354267 "AL" 15 75 178 1.548793 2 0 0 4842481 6.6 31 27.15205 29.434875 .4848089 .15354267 "AL" 15 103 178 2.127009 1 0 0 4842481 6.6 31 27.15205 29.434875 .4848089 .15354267 "AL" 16 65 145 1.3422872 2 0 0 4842481 6.233333 31 27.15205 29.434875 .4848089 .15354267 "AL" 16 80 145 1.6520457 1 0 0 4842481 6.233333 31 27.15205 29.434875 .4848089 .15354267 "AL" 17 64 116 1.3187284 1 0 0 4853160 6.1 31 27.26294 29.60861 .484659 .1574272 "AL" 17 52 116 1.0714668 2 0 0 4853160 6.1 31 27.26294 29.60861 .484659 .1574272 "AL" 18 47 131 .9684412 2 0 0 4853160 6.166667 31 27.26294 29.60861 .484659 .1574272 "AL" 18 84 131 1.730831 1 0 0 4853160 6.166667 31 27.26294 29.60861 .484659 .1574272 "AL" 19 60 138 1.236308 2 0 0 4853160 6.1 31 27.26294 29.60861 .484659 .1574272 "AL" 19 78 138 1.6072003 1 0 0 4853160 6.1 31 27.26294 29.60861 .484659 .1574272 "AL" 20 61 139 1.256913 2 0 0 4853160 6 31 27.26294 29.60861 .484659 .1574272 "AL" 20 78 139 1.6072003 1 0 0 4853160 6 31 27.26294 29.60861 .484659 .1574272 "AL" 21 50 138 1.0278031 2 0 0 4864745 5.966667 31 27.34045 29.740936 .4843596 .1613207 "AL" 21 88 138 1.8089335 1 0 0 4864745 5.966667 31 27.34045 29.740936 .4843596 .1613207 "AL" 22 67 145 1.377256 2 0 0 4864745 5.833333 31 27.34045 29.740936 .4843596 .1613207 "AL" 22 78 145 1.6033728 1 0 0 4864745 5.833333 31 27.34045 29.740936 .4843596 .1613207 "AL" 23 70 124 1.4389243 1 0 0 4864745 5.833333 31 27.34045 29.740936 .4843596 .1613207 "AL" 23 54 124 1.1100273 2 0 0 4864745 5.833333 31 27.34045 29.740936 .4843596 .1613207 "AL" 24 85 134 1.7472652 1 0 0 4864745 5.8 31 27.34045 29.740936 .4843596 .1613207 "AL" 24 49 134 1.0072471 2 0 0 4864745 5.8 31 27.34045 29.740936 .4843596 .1613207 end
My hypothesis is that the new state policies have reduced the number of poisonings resulting in minor/ no adverse medical outcome [outcome==1] and increased the rate of poisonings resulting in more severe adverse medical outcomes [outcome==2]. Since the outcome, at the individual level is essentially binary (result in outcome 1 or 2), I have been recommended a *blocked/ grouped* logit to test if the policy increased the probability of the worse outcomes and reduced the probability of the more minor adverse outcome [outcome==1]. For reasons of past literature, I included fixed effects for each state, quarter and state specific linear and quadratic time trends. I run the following:
Code:
glm poisonings post treated x1 x2 x3 x4 x5 x6 state_share_rural_2010 md_100000 pa_1000 > 00 rn_100000 i.qtr i.stateFIPS i.stateFIPS#(c.qtr c.qtrsq) if outcome==2, family(binom > ial total) link(logit) vce(cluster state) note: 53.stateFIPS omitted because of collinearity note: 54.stateFIPS omitted because of collinearity note: 55.stateFIPS omitted because of collinearity note: 55.stateFIPS#c.qtr omitted because of collinearity note: 55.stateFIPS#c.qtrsq omitted because of collinearity Iteration 0: log pseudolikelihood = -3591.7962 Iteration 1: log pseudolikelihood = -3588.9357 Iteration 2: log pseudolikelihood = -3588.9354 Generalized linear models No. of obs = 1,128 Optimization : ML Residual df = 1,097 Scale parameter = 1 Deviance = 1364.558325 (1/df) Deviance = 1.2439 Pearson = 1350.134022 (1/df) Pearson = 1.230751 Variance function: V(u) = u*(1-u/total) [Binomial] Link function : g(u) = ln(u/(total-u)) [Logit] AIC = 6.418325 Log pseudolikelihood = -3588.935448 BIC = -6345.379 (Std. Err. adjusted for 47 clusters in state) ---------------------------------------------------------------------------------------- | Robust poisonings | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------------+---------------------------------------------------------------- post | .1280374 .0449471 2.85 0.004 .0399427 .2161321 treated | 9.455857 18.72428 0.51 0.614 -27.24306 46.15478 x1 | -.0317194 .023618 -1.34 0.179 -.0780098 .014571 x2 | -.5660772 1.021753 -0.55 0.580 -2.568676 1.436522 x3 | .0800275 .5061473 0.16 0.874 -.9120029 1.072058 x4 | -.0137807 .307849 -0.04 0.964 -.6171536 .5895922 x5 | 122.5292 101.0741 1.21 0.225 -75.57246 320.6308 x6 | 44.02676 24.5068 1.80 0.072 -4.005688 92.0592 state_share_rural_2010 | -10.30704 65.50204 -0.16 0.875 -138.6887 118.0746 md_100000 | -.0520859 .094167 -0.55 0.580 -.2366498 .1324779 pa_100000 | .0444265 .2285538 0.19 0.846 -.4035307 .4923837 rn_100000 | .0143391 .0295121 0.49 0.627 -.0435036 .0721817 | qtr | 2 | -.0681311 .0350371 -1.94 0.052 -.1368026 .0005403 3 | -.0792729 .0404783 -1.96 0.050 -.1586088 .0000631 4 | -.1231814 .0446144 -2.76 0.006 -.2106239 -.0357388 5 | -.3408823 .1485142 -2.30 0.022 -.6319648 -.0497997 6 | -.376968 .152566 -2.47 0.013 -.6759919 -.0779441 7 | -.3821582 .1491666 -2.56 0.010 -.6745193 -.0897971 8 | -.4553765 .1579642 -2.88 0.004 -.7649807 -.1457722 9 | -.593276 .2767458 -2.14 0.032 -1.135688 -.0508643 10 | -.5681158 .2796033 -2.03 0.042 -1.116128 -.0201034 11 | -.6535904 .2897996 -2.26 0.024 -1.221587 -.0855936 12 | -.6966991 .2820733 -2.47 0.014 -1.249553 -.1438457 13 | -.9303921 .4069777 -2.29 0.022 -1.728054 -.1327305 14 | -.9062193 .4147891 -2.18 0.029 -1.719191 -.0932476 15 | -.9076593 .4173466 -2.17 0.030 -1.725644 -.089675 16 | -.8987763 .4118481 -2.18 0.029 -1.705984 -.0915689 17 | -1.132076 .5379077 -2.10 0.035 -2.186356 -.0777966 18 | -1.035746 .547678 -1.89 0.059 -2.109175 .0376827 19 | -1.055255 .5546635 -1.90 0.057 -2.142376 .0318653 20 | -1.113239 .5579486 -2.00 0.046 -2.206798 -.0196796 21 | -1.26025 .6798281 -1.85 0.064 -2.592689 .0721882 22 | -1.202498 .6817646 -1.76 0.078 -2.538732 .1337362 23 | -1.181239 .6835069 -1.73 0.084 -2.520888 .1584101 24 | -1.187128 .7014095 -1.69 0.091 -2.561865 .1876099 | stateFIPS | 2 | -8.947468 15.81543 -0.57 0.572 -39.94515 22.05021 4 | -12.0106 25.66544 -0.47 0.640 -62.31393 38.29274 5 | -6.085038 14.60429 -0.42 0.677 -34.70891 22.53884 6 | -11.44933 26.53333 -0.43 0.666 -63.4537 40.55503 8 | -3.529745 8.667129 -0.41 0.684 -20.51701 13.45752 9 | -4.957952 18.50464 -0.27 0.789 -41.22638 31.31047 10 | -9.679517 27.42826 -0.35 0.724 -63.43792 44.07889 12 | -1.411309 12.39931 -0.11 0.909 -25.7135 22.89089 13 | -8.957343 23.76524 -0.38 0.706 -55.53636 37.62167 15 | 2.410176 19.07879 0.13 0.899 -34.98357 39.80392 16 | .5550814 5.612196 0.10 0.921 -10.44462 11.55478 17 | -10.10562 27.64226 -0.37 0.715 -64.28347 44.07222 18 | -7.997299 22.59134 -0.35 0.723 -52.27551 36.28091 19 | 1.256184 5.697489 0.22 0.825 -9.91069 12.42306 20 | -2.694958 4.422801 -0.61 0.542 -11.36349 5.973572 21 | -6.169956 13.26489 -0.47 0.642 -32.16867 19.82876 22 | -6.391388 21.14652 -0.30 0.762 -47.8378 35.05502 23 | 4.271387 23.94119 0.18 0.858 -42.65247 51.19525 24 | -6.223166 22.78421 -0.27 0.785 -50.87939 38.43306 25 | -5.287871 21.46285 -0.25 0.805 -47.35428 36.77854 26 | 2.713903 4.803896 0.56 0.572 -6.70156 12.12937 27 | -12.14202 22.93662 -0.53 0.597 -57.09697 32.81292 28 | -.4793367 2.3538 -0.20 0.839 -5.0927 4.134027 29 | 1.934788 6.445643 0.30 0.764 -10.69844 14.56802 30 | 2.677419 18.53608 0.14 0.885 -33.65263 39.00747 31 | -6.732864 10.03005 -0.67 0.502 -26.3914 12.92567 32 | -9.16496 26.75222 -0.34 0.732 -61.59834 43.26842 33 | -8.881691 14.92266 -0.60 0.552 -38.12956 20.36618 34 | -5.947119 26.02535 -0.23 0.819 -56.95588 45.06164 35 | -9.350599 18.14553 -0.52 0.606 -44.91518 26.21399 36 | -4.148707 17.65852 -0.23 0.814 -38.75877 30.46136 37 | -1.345194 4.815853 -0.28 0.780 -10.78409 8.093704 39 | -6.138378 22.08242 -0.28 0.781 -49.41913 37.14237 40 | -6.719478 15.08482 -0.45 0.656 -36.28517 22.84622 41 | 2.539168 3.731686 0.68 0.496 -4.774802 9.853138 42 | -4.229331 16.34496 -0.26 0.796 -36.26487 27.80621 44 | -6.861775 26.88413 -0.26 0.799 -59.5537 45.83015 45 | -10.46153 20.59378 -0.51 0.611 -50.8246 29.90154 46 | -10.28722 16.97919 -0.61 0.545 -43.56582 22.99138 47 | -6.669694 18.00786 -0.37 0.711 -41.96446 28.62507 48 | -10.08412 25.88989 -0.39 0.697 -60.82737 40.65912 49 | -11.6419 27.24898 -0.43 0.669 -65.04893 41.76512 51 | -8.827182 18.90776 -0.47 0.641 -45.88571 28.23135 53 | 0 (omitted) 54 | 0 (omitted) 55 | 0 (omitted) | stateFIPS#c.qtr | 1 | .0873125 .0090174 9.68 0.000 .0696387 .1049863 2 | .0062401 .0516663 0.12 0.904 -.0950241 .1075043 4 | .0232368 .0121039 1.92 0.055 -.0004864 .0469601 5 | -.0140137 .0073818 -1.90 0.058 -.0284817 .0004543 6 | .0474572 .0153308 3.10 0.002 .0174094 .0775051 8 | .0428852 .0263179 1.63 0.103 -.0086969 .0944674 9 | .0875877 .0138127 6.34 0.000 .0605154 .1146601 10 | .0494902 .0226979 2.18 0.029 .0050031 .0939773 12 | -.0365217 .0119252 -3.06 0.002 -.0598947 -.0131488 13 | -.0292258 .0121902 -2.40 0.017 -.0531182 -.0053334 15 | -.0103332 .0455048 -0.23 0.820 -.0995209 .0788545 16 | .1305838 .0095613 13.66 0.000 .1118441 .1493235 17 | .0688074 .0069859 9.85 0.000 .0551152 .0824995 18 | .043609 .0060178 7.25 0.000 .0318142 .0554037 19 | .0700069 .0107145 6.53 0.000 .0490069 .0910069 20 | .0670102 .0134287 4.99 0.000 .0406904 .0933301 21 | -.0177537 .0126121 -1.41 0.159 -.042473 .0069656 22 | .1274598 .0128937 9.89 0.000 .1021886 .1527311 23 | .1445257 .0190443 7.59 0.000 .1071996 .1818519 24 | .0023594 .0252601 0.09 0.926 -.0471494 .0518682 25 | -.0220327 .027342 -0.81 0.420 -.0756221 .0315566 26 | .0698199 .008729 8.00 0.000 .0527114 .0869283 27 | .0593758 .0098976 6.00 0.000 .0399768 .0787747 28 | .0904343 .0075578 11.97 0.000 .0756213 .1052474 29 | .0323497 .0063185 5.12 0.000 .0199657 .0447338 30 | .0640228 .0149398 4.29 0.000 .0347413 .0933043 31 | .1089145 .0132758 8.20 0.000 .0828945 .1349346 32 | .0247509 .0193151 1.28 0.200 -.013106 .0626079 33 | .0090151 .0174771 0.52 0.606 -.0252395 .0432696 34 | .0532562 .0139683 3.81 0.000 .0258788 .0806335 35 | -.0146453 .0179873 -0.81 0.416 -.0498997 .0206092 36 | -.0012594 .0227893 -0.06 0.956 -.0459255 .0434068 37 | .046556 .0144417 3.22 0.001 .0182508 .0748612 39 | .0157902 .0124939 1.26 0.206 -.0086973 .0402778 40 | -.0534207 .0100618 -5.31 0.000 -.0731415 -.0336999 41 | -.0450526 .0146912 -3.07 0.002 -.0738469 -.0162583 42 | .0743016 .0164902 4.51 0.000 .0419815 .1066217 44 | .0563772 .0083841 6.72 0.000 .0399447 .0728098 45 | .0279634 .0201218 1.39 0.165 -.0114745 .0674013 46 | .1439447 .0710833 2.03 0.043 .0046241 .2832654 47 | .0001434 .0143339 0.01 0.992 -.0279506 .0282374 48 | .0460944 .0084858 5.43 0.000 .0294626 .0627262 49 | .041073 .0182258 2.25 0.024 .005351 .076795 51 | .0420577 .0182573 2.30 0.021 .0062741 .0778413 53 | .0221912 .0212663 1.04 0.297 -.0194901 .0638724 54 | .0086252 .0130878 0.66 0.510 -.0170265 .0342768 55 | 0 (omitted) | stateFIPS#c.qtrsq | 1 | -.0022872 .0003433 -6.66 0.000 -.0029602 -.0016143 2 | -.0002177 .0014478 -0.15 0.880 -.0030554 .00262 4 | -.0005262 .000264 -1.99 0.046 -.0010436 -8.80e-06 5 | .0017617 .0002188 8.05 0.000 .0013329 .0021906 6 | -.001821 .0002215 -8.22 0.000 -.0022551 -.0013869 8 | -.0018612 .0003925 -4.74 0.000 -.0026304 -.001092 9 | -.0024705 .000478 -5.17 0.000 -.0034074 -.0015336 10 | -.0013925 .000395 -3.53 0.000 -.0021667 -.0006184 12 | .0007492 .0004226 1.77 0.076 -.000079 .0015774 13 | .0010488 .0003898 2.69 0.007 .0002848 .0018128 15 | .0002051 .0008639 0.24 0.812 -.0014881 .0018982 16 | -.0033215 .0002989 -11.11 0.000 -.0039074 -.0027357 17 | -.0016999 .0001638 -10.38 0.000 -.0020209 -.001379 18 | -.0006631 .0002067 -3.21 0.001 -.0010682 -.0002581 19 | -.0012122 .0001109 -10.93 0.000 -.0014295 -.0009949 20 | -.0016441 .000369 -4.46 0.000 -.0023673 -.0009209 21 | .0005559 .0004014 1.39 0.166 -.0002307 .0013426 22 | -.0024825 .0003398 -7.31 0.000 -.0031485 -.0018165 23 | -.0048119 .0004619 -10.42 0.000 -.0057173 -.0039066 24 | -.0003339 .0004897 -0.68 0.495 -.0012937 .0006259 25 | .0006504 .0004045 1.61 0.108 -.0001424 .0014432 26 | -.002681 .0001529 -17.54 0.000 -.0029806 -.0023814 27 | -.0012435 .0002437 -5.10 0.000 -.001721 -.0007659 28 | -.0027013 .000447 -6.04 0.000 -.0035775 -.0018251 29 | -.0012331 .0002127 -5.80 0.000 -.00165 -.0008162 30 | -.0023044 .0002618 -8.80 0.000 -.0028176 -.0017912 31 | -.0026962 .0002079 -12.97 0.000 -.0031036 -.0022887 32 | -.0007269 .0004593 -1.58 0.114 -.0016271 .0001734 33 | -.0000602 .0003107 -0.19 0.846 -.0006691 .0005488 34 | -.0017158 .0003741 -4.59 0.000 -.0024489 -.0009827 35 | .0003067 .0004568 0.67 0.502 -.0005886 .001202 36 | -.0001027 .0005236 -0.20 0.844 -.0011288 .0009235 37 | -.0011671 .0003314 -3.52 0.000 -.0018166 -.0005176 39 | -.0008741 .0003671 -2.38 0.017 -.0015936 -.0001547 40 | .0007359 .0004954 1.49 0.137 -.0002351 .0017068 41 | .0015358 .0006019 2.55 0.011 .000356 .0027156 42 | -.0016836 .0003356 -5.02 0.000 -.0023413 -.0010259 44 | -.001232 .0003575 -3.45 0.001 -.0019326 -.0005314 45 | .0001419 .0004377 0.32 0.746 -.000716 .0009998 46 | -.0039741 .0009312 -4.27 0.000 -.0057992 -.002149 47 | .0006898 .0004325 1.59 0.111 -.000158 .0015376 48 | -.0008588 .0002376 -3.61 0.000 -.0013245 -.0003931 49 | -.0007886 .0004077 -1.93 0.053 -.0015876 .0000104 51 | -.001024 .0004956 -2.07 0.039 -.0019953 -.0000526 53 | -.0005743 .0004112 -1.40 0.163 -.0013802 .0002316 54 | -.0010522 .0003709 -2.84 0.005 -.0017792 -.0003252 55 | 0 (omitted) | _cons | -51.25055 47.68432 -1.07 0.282 -144.7101 42.20899 ---------------------------------------------------------------------------------------
that I got by
converting the number of poisonings to rates of poisonings per 100,000 persons. Population standardized estimates are better to compare (changes in) rates across states with otherwise very different population sizes
. How can I do that?
I could really appreciate your help with this.
Sincerely,
Sumedha.
I could really appreciate your help with this.
Sincerely,
Sumedha.
0 Response to GLM for grouped/ blocked population standardized binary data.
Post a Comment