Sorry for imposing further but I could really use some help. Let me explain more.

I have data on incidences of poisonings in each of the 50 US states by quarter for 26 quarters. Each poisoning could result in one of
2 outcomes - no/ minor adverse medical outcome [outcome==1] or severe adverse medical outcome [outcome=2]. So the outcome is essentially binary - outcome 1 or outcome 2
. I
want to evaluate the impact of a certain government policy adopted by a subset of states [identified in the data below with variable treated==1] poisonings.
I also have, separately from the US Census, the population of each state (variable 'pop' below). My data looks as follows:

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input str5 state float qtr long poisonings float(total poisonings_popstd outcome post) byte treated long pop float(x1 x2 x3 x4 x5 x6)
"AK"  1  20  27  2.769937 1 0 1  722038  7.733333 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  1   7  27  .9694781 2 0 1  722038  7.733333 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  2  20  29  2.769937 1 0 1  722038  7.566667 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  2   9  29 1.2464718 2 0 1  722038  7.566667 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  3  27  35 3.7394154 1 0 1  722038       7.5 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  3   8  35 1.1079749 2 0 1  722038       7.5 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  4  18  32 2.4929435 1 0 1  722038  7.466667 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  4  14  32  1.938956 2 0 1  722038  7.466667 27.7  4.545096 28.878407 .52014977 .08111796
"AK"  5  11  26  1.506026 2 0 1  730399  7.333333 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  5  15  26  2.053672 1 0 1  730399  7.333333 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  6   6  29  .8214688 2 0 1  730399  7.166667 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  6  23  29  3.148964 1 0 1  730399  7.166667 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  7  13  17  1.779849 1 0 1  730399  7.033333 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  7   4  17 .54764587 2 0 1  730399  7.033333 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  8  18  23 2.4644065 1 0 1  730399         7 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  8   5  23  .6845573 2 0 1  730399         7 27.7 4.6983337  29.19467  .5209735  .0854725
"AK"  9  16  18 2.1708307 1 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK"  9   2  18 .27135384 2 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 10  10  19 1.3567692 2 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 10   9  19 1.2210923 1 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 11  18  24  2.442185 1 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 11   6  24  .8140616 2 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 12  18  28  2.442185 1 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 12  10  28 1.3567692 2 0 1  737045         7 27.7  4.786403   29.4967  .5228226 .08950587
"AK" 13   7  12  .9506904 1 0 1  736307         7 27.7  4.795406    29.827  .5233248 .09415574
"AK" 13   5  12  .6790646 2 0 1  736307         7 27.7  4.795406    29.827  .5233248 .09415574
"AK" 14  16  24 2.1730065 1 0 1  736307         7 27.7  4.795406    29.827  .5233248 .09415574
"AK" 14   8  24 1.0865033 2 0 1  736307         7 27.7  4.795406    29.827  .5233248 .09415574
"AK" 15  18  24 2.4446325 1 0 1  736307  6.866667 27.7  4.795406    29.827  .5233248 .09415574
"AK" 15   6  24  .8148775 2 0 1  736307  6.866667 27.7  4.795406    29.827  .5233248 .09415574
"AK" 16  16  25 2.1730065 1 0 1  736307       6.6 27.7  4.795406    29.827  .5233248 .09415574
"AK" 16   9  25 1.2223163 2 0 1  736307       6.6 27.7  4.795406    29.827  .5233248 .09415574
"AK" 17  23  29 3.1184454 1 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 17   6  29  .8135075 2 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 18  12  27  1.627015 1 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 18  15  27 2.0337687 2 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 19   6  13  .8135075 2 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 19   7  13   .949092 1 0 1  737547       6.5 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 20   3  23 .40675375 2 0 1  737547  6.633333 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 20  20  23 2.7116916 1 0 1  737547  6.633333 27.7  4.818702  30.10442  .5234001 .09878014
"AK" 21  19  31   2.56236 1 0 1  741504  6.766667 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 21  12  31 1.6183325 2 0 1  741504  6.766667 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 22   8  18 1.0788883 2 0 1  741504  6.866667 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 22  10  18 1.3486104 1 0 1  741504  6.866667 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 23   5  27  .6743052 2 0 1  741504         7 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 23  22  27  2.966943 1 0 1  741504         7 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 24   9  20 1.2137494 2 0 1  741504         7 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 24  11  20 1.4834714 1 0 1  741504         7 27.7  4.911483  30.41499  .5231637 .10406608
"AK" 25  16  26 2.1627877 1 0 1  739786  7.033333 27.7         .         .         .         .
"AK" 25  10  26 1.3517423 2 0 1  739786  7.033333 27.7         .         .         .         .
"AK" 26  20  31 2.7034845 1 0 1  739786  7.133333 27.7         .         .         .         .
"AK" 26  11  31 1.4869165 2 0 1  739786  7.133333 27.7         .         .         .         .
"AL"  1 127 191  2.646476 1 0 0 4798834 10.166667   31 26.847376   28.9922  .4852006 .14009614
"AL"  1  64 191 1.3336573 2 0 0 4798834 10.166667   31 26.847376   28.9922  .4852006 .14009614
"AL"  2 120 183 2.5006075 1 0 0 4798834        10   31 26.847376   28.9922  .4852006 .14009614
"AL"  2  63 183  1.312819 2 0 0 4798834        10   31 26.847376   28.9922  .4852006 .14009614
"AL"  3  62 172 1.2919805 2 0 0 4798834  9.666667   31 26.847376   28.9922  .4852006 .14009614
"AL"  3 110 172 2.2922235 1 0 0 4798834  9.666667   31 26.847376   28.9922  .4852006 .14009614
"AL"  4  52 161 1.0835966 2 0 0 4798834  8.633333   31 26.847376   28.9922  .4852006 .14009614
"AL"  4 109 161 2.2713852 1 0 0 4798834  8.633333   31 26.847376   28.9922  .4852006 .14009614
"AL"  5  66 171  1.370556 2 0 0 4815564         8   31 26.951054  29.14335  .4851257 .14522338
"AL"  5 105 171   2.18043 1 0 0 4815564         8   31 26.951054  29.14335  .4851257 .14522338
"AL"  6  65 198   1.34979 2 0 0 4815564       8.2   31 26.951054  29.14335  .4851257 .14522338
"AL"  6 133 198  2.761878 1 0 0 4815564       8.2   31 26.951054  29.14335  .4851257 .14522338
"AL"  7 127 202  2.637282 1 0 0 4815564  8.066667   31 26.951054  29.14335  .4851257 .14522338
"AL"  7  75 202   1.55745 2 0 0 4815564  8.066667   31 26.951054  29.14335  .4851257 .14522338
"AL"  8 123 196  2.554218 1 0 0 4815564  7.666667   31 26.951054  29.14335  .4851257 .14522338
"AL"  8  73 196  1.515918 2 0 0 4815564  7.666667   31 26.951054  29.14335  .4851257 .14522338
"AL"  9 128 193  2.649851 1 0 0 4830460       7.4   31 27.068136 29.300863  .4850109 .14920263
"AL"  9  65 193 1.3456275 2 0 0 4830460       7.4   31 27.068136 29.300863  .4850109 .14920263
"AL" 10 104 168 2.1530042 1 0 0 4830460       7.1   31 27.068136 29.300863  .4850109 .14920263
"AL" 10  64 168 1.3249255 2 0 0 4830460       7.1   31 27.068136 29.300863  .4850109 .14920263
"AL" 11  62 169 1.2835217 2 0 0 4830460  7.133333   31 27.068136 29.300863  .4850109 .14920263
"AL" 11 107 169   2.21511 1 0 0 4830460  7.133333   31 27.068136 29.300863  .4850109 .14920263
"AL" 12  93 170 1.9252825 1 0 0 4830460  7.233333   31 27.068136 29.300863  .4850109 .14920263
"AL" 12  77 170  1.594051 2 0 0 4830460  7.233333   31 27.068136 29.300863  .4850109 .14920263
"AL" 13  87 160 1.7965997 1 0 0 4842481  7.233333   31  27.15205 29.434875  .4848089 .15354267
"AL" 13  73 160 1.5074917 2 0 0 4842481  7.233333   31  27.15205 29.434875  .4848089 .15354267
"AL" 14  76 159 1.5694435 2 0 0 4842481         7   31  27.15205 29.434875  .4848089 .15354267
"AL" 14  83 159 1.7139975 1 0 0 4842481         7   31  27.15205 29.434875  .4848089 .15354267
"AL" 15  75 178  1.548793 2 0 0 4842481       6.6   31  27.15205 29.434875  .4848089 .15354267
"AL" 15 103 178  2.127009 1 0 0 4842481       6.6   31  27.15205 29.434875  .4848089 .15354267
"AL" 16  65 145 1.3422872 2 0 0 4842481  6.233333   31  27.15205 29.434875  .4848089 .15354267
"AL" 16  80 145 1.6520457 1 0 0 4842481  6.233333   31  27.15205 29.434875  .4848089 .15354267
"AL" 17  64 116 1.3187284 1 0 0 4853160       6.1   31  27.26294  29.60861   .484659  .1574272
"AL" 17  52 116 1.0714668 2 0 0 4853160       6.1   31  27.26294  29.60861   .484659  .1574272
"AL" 18  47 131  .9684412 2 0 0 4853160  6.166667   31  27.26294  29.60861   .484659  .1574272
"AL" 18  84 131  1.730831 1 0 0 4853160  6.166667   31  27.26294  29.60861   .484659  .1574272
"AL" 19  60 138  1.236308 2 0 0 4853160       6.1   31  27.26294  29.60861   .484659  .1574272
"AL" 19  78 138 1.6072003 1 0 0 4853160       6.1   31  27.26294  29.60861   .484659  .1574272
"AL" 20  61 139  1.256913 2 0 0 4853160         6   31  27.26294  29.60861   .484659  .1574272
"AL" 20  78 139 1.6072003 1 0 0 4853160         6   31  27.26294  29.60861   .484659  .1574272
"AL" 21  50 138 1.0278031 2 0 0 4864745  5.966667   31  27.34045 29.740936  .4843596  .1613207
"AL" 21  88 138 1.8089335 1 0 0 4864745  5.966667   31  27.34045 29.740936  .4843596  .1613207
"AL" 22  67 145  1.377256 2 0 0 4864745  5.833333   31  27.34045 29.740936  .4843596  .1613207
"AL" 22  78 145 1.6033728 1 0 0 4864745  5.833333   31  27.34045 29.740936  .4843596  .1613207
"AL" 23  70 124 1.4389243 1 0 0 4864745  5.833333   31  27.34045 29.740936  .4843596  .1613207
"AL" 23  54 124 1.1100273 2 0 0 4864745  5.833333   31  27.34045 29.740936  .4843596  .1613207
"AL" 24  85 134 1.7472652 1 0 0 4864745       5.8   31  27.34045 29.740936  .4843596  .1613207
"AL" 24  49 134 1.0072471 2 0 0 4864745       5.8   31  27.34045 29.740936  .4843596  .1613207
end

My hypothesis is that the new state policies have reduced the number of poisonings resulting in minor/ no adverse medical outcome [outcome==1] and increased the rate of poisonings resulting in more severe adverse medical outcomes [outcome==2]. Since the outcome, at the individual level is essentially binary (result in outcome 1 or 2), I have been recommended a *blocked/ grouped* logit to test if the policy increased the probability of the worse outcomes and reduced the probability of the more minor adverse outcome [outcome==1]. For reasons of past literature, I included fixed effects for each state, quarter and state specific linear and quadratic time trends. I run the following:

Code:
 glm poisonings post treated  x1 x2 x3 x4 x5 x6 state_share_rural_2010 md_100000 pa_1000
> 00 rn_100000 i.qtr i.stateFIPS i.stateFIPS#(c.qtr c.qtrsq)  if outcome==2, family(binom
> ial total) link(logit) vce(cluster state)
note: 53.stateFIPS omitted because of collinearity
note: 54.stateFIPS omitted because of collinearity
note: 55.stateFIPS omitted because of collinearity
note: 55.stateFIPS#c.qtr omitted because of collinearity
note: 55.stateFIPS#c.qtrsq omitted because of collinearity

Iteration 0:   log pseudolikelihood = -3591.7962 
Iteration 1:   log pseudolikelihood = -3588.9357 
Iteration 2:   log pseudolikelihood = -3588.9354 

Generalized linear models                         No. of obs      =      1,128
Optimization     : ML                             Residual df     =      1,097
                                                  Scale parameter =          1
Deviance         =  1364.558325                   (1/df) Deviance =     1.2439
Pearson          =  1350.134022                   (1/df) Pearson  =   1.230751

Variance function: V(u) = u*(1-u/total)           [Binomial]
Link function    : g(u) = ln(u/(total-u))         [Logit]

                                                  AIC             =   6.418325
Log pseudolikelihood = -3588.935448               BIC             =  -6345.379

                                           (Std. Err. adjusted for 47 clusters in state)
----------------------------------------------------------------------------------------
                       |               Robust
            poisonings |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
                  post |   .1280374   .0449471     2.85   0.004     .0399427    .2161321
               treated |   9.455857   18.72428     0.51   0.614    -27.24306    46.15478
                    x1 |  -.0317194    .023618    -1.34   0.179    -.0780098     .014571
                    x2 |  -.5660772   1.021753    -0.55   0.580    -2.568676    1.436522
                    x3 |   .0800275   .5061473     0.16   0.874    -.9120029    1.072058
                    x4 |  -.0137807    .307849    -0.04   0.964    -.6171536    .5895922
                    x5 |   122.5292   101.0741     1.21   0.225    -75.57246    320.6308
                    x6 |   44.02676    24.5068     1.80   0.072    -4.005688     92.0592
state_share_rural_2010 |  -10.30704   65.50204    -0.16   0.875    -138.6887    118.0746
             md_100000 |  -.0520859    .094167    -0.55   0.580    -.2366498    .1324779
             pa_100000 |   .0444265   .2285538     0.19   0.846    -.4035307    .4923837
             rn_100000 |   .0143391   .0295121     0.49   0.627    -.0435036    .0721817
                       |
                   qtr |
                    2  |  -.0681311   .0350371    -1.94   0.052    -.1368026    .0005403
                    3  |  -.0792729   .0404783    -1.96   0.050    -.1586088    .0000631
                    4  |  -.1231814   .0446144    -2.76   0.006    -.2106239   -.0357388
                    5  |  -.3408823   .1485142    -2.30   0.022    -.6319648   -.0497997
                    6  |   -.376968    .152566    -2.47   0.013    -.6759919   -.0779441
                    7  |  -.3821582   .1491666    -2.56   0.010    -.6745193   -.0897971
                    8  |  -.4553765   .1579642    -2.88   0.004    -.7649807   -.1457722
                    9  |   -.593276   .2767458    -2.14   0.032    -1.135688   -.0508643
                   10  |  -.5681158   .2796033    -2.03   0.042    -1.116128   -.0201034
                   11  |  -.6535904   .2897996    -2.26   0.024    -1.221587   -.0855936
                   12  |  -.6966991   .2820733    -2.47   0.014    -1.249553   -.1438457
                   13  |  -.9303921   .4069777    -2.29   0.022    -1.728054   -.1327305
                   14  |  -.9062193   .4147891    -2.18   0.029    -1.719191   -.0932476
                   15  |  -.9076593   .4173466    -2.17   0.030    -1.725644    -.089675
                   16  |  -.8987763   .4118481    -2.18   0.029    -1.705984   -.0915689
                   17  |  -1.132076   .5379077    -2.10   0.035    -2.186356   -.0777966
                   18  |  -1.035746    .547678    -1.89   0.059    -2.109175    .0376827
                   19  |  -1.055255   .5546635    -1.90   0.057    -2.142376    .0318653
                   20  |  -1.113239   .5579486    -2.00   0.046    -2.206798   -.0196796
                   21  |   -1.26025   .6798281    -1.85   0.064    -2.592689    .0721882
                   22  |  -1.202498   .6817646    -1.76   0.078    -2.538732    .1337362
                   23  |  -1.181239   .6835069    -1.73   0.084    -2.520888    .1584101
                   24  |  -1.187128   .7014095    -1.69   0.091    -2.561865    .1876099
                       |
             stateFIPS |
                    2  |  -8.947468   15.81543    -0.57   0.572    -39.94515    22.05021
                    4  |   -12.0106   25.66544    -0.47   0.640    -62.31393    38.29274
                    5  |  -6.085038   14.60429    -0.42   0.677    -34.70891    22.53884
                    6  |  -11.44933   26.53333    -0.43   0.666     -63.4537    40.55503
                    8  |  -3.529745   8.667129    -0.41   0.684    -20.51701    13.45752
                    9  |  -4.957952   18.50464    -0.27   0.789    -41.22638    31.31047
                   10  |  -9.679517   27.42826    -0.35   0.724    -63.43792    44.07889
                   12  |  -1.411309   12.39931    -0.11   0.909     -25.7135    22.89089
                   13  |  -8.957343   23.76524    -0.38   0.706    -55.53636    37.62167
                   15  |   2.410176   19.07879     0.13   0.899    -34.98357    39.80392
                   16  |   .5550814   5.612196     0.10   0.921    -10.44462    11.55478
                   17  |  -10.10562   27.64226    -0.37   0.715    -64.28347    44.07222
                   18  |  -7.997299   22.59134    -0.35   0.723    -52.27551    36.28091
                   19  |   1.256184   5.697489     0.22   0.825     -9.91069    12.42306
                   20  |  -2.694958   4.422801    -0.61   0.542    -11.36349    5.973572
                   21  |  -6.169956   13.26489    -0.47   0.642    -32.16867    19.82876
                   22  |  -6.391388   21.14652    -0.30   0.762     -47.8378    35.05502
                   23  |   4.271387   23.94119     0.18   0.858    -42.65247    51.19525
                   24  |  -6.223166   22.78421    -0.27   0.785    -50.87939    38.43306
                   25  |  -5.287871   21.46285    -0.25   0.805    -47.35428    36.77854
                   26  |   2.713903   4.803896     0.56   0.572     -6.70156    12.12937
                   27  |  -12.14202   22.93662    -0.53   0.597    -57.09697    32.81292
                   28  |  -.4793367     2.3538    -0.20   0.839      -5.0927    4.134027
                   29  |   1.934788   6.445643     0.30   0.764    -10.69844    14.56802
                   30  |   2.677419   18.53608     0.14   0.885    -33.65263    39.00747
                   31  |  -6.732864   10.03005    -0.67   0.502     -26.3914    12.92567
                   32  |   -9.16496   26.75222    -0.34   0.732    -61.59834    43.26842
                   33  |  -8.881691   14.92266    -0.60   0.552    -38.12956    20.36618
                   34  |  -5.947119   26.02535    -0.23   0.819    -56.95588    45.06164
                   35  |  -9.350599   18.14553    -0.52   0.606    -44.91518    26.21399
                   36  |  -4.148707   17.65852    -0.23   0.814    -38.75877    30.46136
                   37  |  -1.345194   4.815853    -0.28   0.780    -10.78409    8.093704
                   39  |  -6.138378   22.08242    -0.28   0.781    -49.41913    37.14237
                   40  |  -6.719478   15.08482    -0.45   0.656    -36.28517    22.84622
                   41  |   2.539168   3.731686     0.68   0.496    -4.774802    9.853138
                   42  |  -4.229331   16.34496    -0.26   0.796    -36.26487    27.80621
                   44  |  -6.861775   26.88413    -0.26   0.799     -59.5537    45.83015
                   45  |  -10.46153   20.59378    -0.51   0.611     -50.8246    29.90154
                   46  |  -10.28722   16.97919    -0.61   0.545    -43.56582    22.99138
                   47  |  -6.669694   18.00786    -0.37   0.711    -41.96446    28.62507
                   48  |  -10.08412   25.88989    -0.39   0.697    -60.82737    40.65912
                   49  |   -11.6419   27.24898    -0.43   0.669    -65.04893    41.76512
                   51  |  -8.827182   18.90776    -0.47   0.641    -45.88571    28.23135
                   53  |          0  (omitted)
                   54  |          0  (omitted)
                   55  |          0  (omitted)
                       |
       stateFIPS#c.qtr |
                    1  |   .0873125   .0090174     9.68   0.000     .0696387    .1049863
                    2  |   .0062401   .0516663     0.12   0.904    -.0950241    .1075043
                    4  |   .0232368   .0121039     1.92   0.055    -.0004864    .0469601
                    5  |  -.0140137   .0073818    -1.90   0.058    -.0284817    .0004543
                    6  |   .0474572   .0153308     3.10   0.002     .0174094    .0775051
                    8  |   .0428852   .0263179     1.63   0.103    -.0086969    .0944674
                    9  |   .0875877   .0138127     6.34   0.000     .0605154    .1146601
                   10  |   .0494902   .0226979     2.18   0.029     .0050031    .0939773
                   12  |  -.0365217   .0119252    -3.06   0.002    -.0598947   -.0131488
                   13  |  -.0292258   .0121902    -2.40   0.017    -.0531182   -.0053334
                   15  |  -.0103332   .0455048    -0.23   0.820    -.0995209    .0788545
                   16  |   .1305838   .0095613    13.66   0.000     .1118441    .1493235
                   17  |   .0688074   .0069859     9.85   0.000     .0551152    .0824995
                   18  |    .043609   .0060178     7.25   0.000     .0318142    .0554037
                   19  |   .0700069   .0107145     6.53   0.000     .0490069    .0910069
                   20  |   .0670102   .0134287     4.99   0.000     .0406904    .0933301
                   21  |  -.0177537   .0126121    -1.41   0.159     -.042473    .0069656
                   22  |   .1274598   .0128937     9.89   0.000     .1021886    .1527311
                   23  |   .1445257   .0190443     7.59   0.000     .1071996    .1818519
                   24  |   .0023594   .0252601     0.09   0.926    -.0471494    .0518682
                   25  |  -.0220327    .027342    -0.81   0.420    -.0756221    .0315566
                   26  |   .0698199    .008729     8.00   0.000     .0527114    .0869283
                   27  |   .0593758   .0098976     6.00   0.000     .0399768    .0787747
                   28  |   .0904343   .0075578    11.97   0.000     .0756213    .1052474
                   29  |   .0323497   .0063185     5.12   0.000     .0199657    .0447338
                   30  |   .0640228   .0149398     4.29   0.000     .0347413    .0933043
                   31  |   .1089145   .0132758     8.20   0.000     .0828945    .1349346
                   32  |   .0247509   .0193151     1.28   0.200     -.013106    .0626079
                   33  |   .0090151   .0174771     0.52   0.606    -.0252395    .0432696
                   34  |   .0532562   .0139683     3.81   0.000     .0258788    .0806335
                   35  |  -.0146453   .0179873    -0.81   0.416    -.0498997    .0206092
                   36  |  -.0012594   .0227893    -0.06   0.956    -.0459255    .0434068
                   37  |    .046556   .0144417     3.22   0.001     .0182508    .0748612
                   39  |   .0157902   .0124939     1.26   0.206    -.0086973    .0402778
                   40  |  -.0534207   .0100618    -5.31   0.000    -.0731415   -.0336999
                   41  |  -.0450526   .0146912    -3.07   0.002    -.0738469   -.0162583
                   42  |   .0743016   .0164902     4.51   0.000     .0419815    .1066217
                   44  |   .0563772   .0083841     6.72   0.000     .0399447    .0728098
                   45  |   .0279634   .0201218     1.39   0.165    -.0114745    .0674013
                   46  |   .1439447   .0710833     2.03   0.043     .0046241    .2832654
                   47  |   .0001434   .0143339     0.01   0.992    -.0279506    .0282374
                   48  |   .0460944   .0084858     5.43   0.000     .0294626    .0627262
                   49  |    .041073   .0182258     2.25   0.024      .005351     .076795
                   51  |   .0420577   .0182573     2.30   0.021     .0062741    .0778413
                   53  |   .0221912   .0212663     1.04   0.297    -.0194901    .0638724
                   54  |   .0086252   .0130878     0.66   0.510    -.0170265    .0342768
                   55  |          0  (omitted)
                       |
     stateFIPS#c.qtrsq |
                    1  |  -.0022872   .0003433    -6.66   0.000    -.0029602   -.0016143
                    2  |  -.0002177   .0014478    -0.15   0.880    -.0030554      .00262
                    4  |  -.0005262    .000264    -1.99   0.046    -.0010436   -8.80e-06
                    5  |   .0017617   .0002188     8.05   0.000     .0013329    .0021906
                    6  |   -.001821   .0002215    -8.22   0.000    -.0022551   -.0013869
                    8  |  -.0018612   .0003925    -4.74   0.000    -.0026304    -.001092
                    9  |  -.0024705    .000478    -5.17   0.000    -.0034074   -.0015336
                   10  |  -.0013925    .000395    -3.53   0.000    -.0021667   -.0006184
                   12  |   .0007492   .0004226     1.77   0.076     -.000079    .0015774
                   13  |   .0010488   .0003898     2.69   0.007     .0002848    .0018128
                   15  |   .0002051   .0008639     0.24   0.812    -.0014881    .0018982
                   16  |  -.0033215   .0002989   -11.11   0.000    -.0039074   -.0027357
                   17  |  -.0016999   .0001638   -10.38   0.000    -.0020209    -.001379
                   18  |  -.0006631   .0002067    -3.21   0.001    -.0010682   -.0002581
                   19  |  -.0012122   .0001109   -10.93   0.000    -.0014295   -.0009949
                   20  |  -.0016441    .000369    -4.46   0.000    -.0023673   -.0009209
                   21  |   .0005559   .0004014     1.39   0.166    -.0002307    .0013426
                   22  |  -.0024825   .0003398    -7.31   0.000    -.0031485   -.0018165
                   23  |  -.0048119   .0004619   -10.42   0.000    -.0057173   -.0039066
                   24  |  -.0003339   .0004897    -0.68   0.495    -.0012937    .0006259
                   25  |   .0006504   .0004045     1.61   0.108    -.0001424    .0014432
                   26  |   -.002681   .0001529   -17.54   0.000    -.0029806   -.0023814
                   27  |  -.0012435   .0002437    -5.10   0.000     -.001721   -.0007659
                   28  |  -.0027013    .000447    -6.04   0.000    -.0035775   -.0018251
                   29  |  -.0012331   .0002127    -5.80   0.000      -.00165   -.0008162
                   30  |  -.0023044   .0002618    -8.80   0.000    -.0028176   -.0017912
                   31  |  -.0026962   .0002079   -12.97   0.000    -.0031036   -.0022887
                   32  |  -.0007269   .0004593    -1.58   0.114    -.0016271    .0001734
                   33  |  -.0000602   .0003107    -0.19   0.846    -.0006691    .0005488
                   34  |  -.0017158   .0003741    -4.59   0.000    -.0024489   -.0009827
                   35  |   .0003067   .0004568     0.67   0.502    -.0005886     .001202
                   36  |  -.0001027   .0005236    -0.20   0.844    -.0011288    .0009235
                   37  |  -.0011671   .0003314    -3.52   0.000    -.0018166   -.0005176
                   39  |  -.0008741   .0003671    -2.38   0.017    -.0015936   -.0001547
                   40  |   .0007359   .0004954     1.49   0.137    -.0002351    .0017068
                   41  |   .0015358   .0006019     2.55   0.011      .000356    .0027156
                   42  |  -.0016836   .0003356    -5.02   0.000    -.0023413   -.0010259
                   44  |   -.001232   .0003575    -3.45   0.001    -.0019326   -.0005314
                   45  |   .0001419   .0004377     0.32   0.746     -.000716    .0009998
                   46  |  -.0039741   .0009312    -4.27   0.000    -.0057992    -.002149
                   47  |   .0006898   .0004325     1.59   0.111     -.000158    .0015376
                   48  |  -.0008588   .0002376    -3.61   0.000    -.0013245   -.0003931
                   49  |  -.0007886   .0004077    -1.93   0.053    -.0015876    .0000104
                   51  |   -.001024   .0004956    -2.07   0.039    -.0019953   -.0000526
                   53  |  -.0005743   .0004112    -1.40   0.163    -.0013802    .0002316
                   54  |  -.0010522   .0003709    -2.84   0.005    -.0017792   -.0003252
                   55  |          0  (omitted)
                       |
                 _cons |  -51.25055   47.68432    -1.07   0.282    -144.7101    42.20899
---------------------------------------------------------------------------------------
However, ideally I want to run this on state-population normalized data [variable poisonings_popstd]
that I got by
converting the number of poisonings to rates of poisonings per 100,000 persons. Population standardized estimates are better to compare (changes in) rates across states with otherwise very different population sizes
. How can I do that?

I could really appreciate your help with this.

Sincerely,
Sumedha.