i am running a regression using panel data and looking at the effect of company financial data and characteristics on tax adjustments. The tax adjustments paid in period t are caused in periods before (t-1 oder t-2) and were found after tax audit. I don´t have many observations per group and i want to control for different company characteristics (dummy variables). The effects are primarily between the groups not within the time series. In my opinion the RE Model would be the logical consequence, but the hausman test rejects H0 so i can´t use RE.
This is how my xtreg, fe regression looks like:
Code:
Code:
xtreg LOG_STN l1.LOG_SALES l2.LOG_SALES l1.PROV l2.PROV l1.LEV l2.LEV l1.DEBT l2.DEBT l1.ROA l2.ROA l1.IVG_intense l2.IVG_intense l1.KAP_intense l2.KAP_intense l1.VOR_intense l > 2.VOR_intense FamUN AUSL_KSTR y2012 y2013 y2014 y2015 y2016 y2017 bw bay hes sac nrw c f g m n, fe note: FamUN omitted because of collinearity note: AUSL_KSTR omitted because of collinearity note: bw omitted because of collinearity note: bay omitted because of collinearity note: hes omitted because of collinearity note: sac omitted because of collinearity note: nrw omitted because of collinearity note: c omitted because of collinearity note: f omitted because of collinearity note: g omitted because of collinearity note: m omitted because of collinearity note: n omitted because of collinearity Fixed-effects (within) regression Number of obs = 3,518 Group variable: idc Number of groups = 2,189 R-sq: Obs per group: within = 0.0216 min = 1 between = 0.0001 avg = 1.6 overall = 0.0002 max = 6 F(22,1307) = 1.31 corr(u_i, Xb) = -0.1703 Prob > F = 0.1501 ------------------------------------------------------------------------------ LOG_STN | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- LOG_SALES | L1. | .8047563 .3752725 2.14 0.032 .0685539 1.540959 L2. | -.7372711 .3916178 -1.88 0.060 -1.505539 .0309972 | PROV | L1. | -.2168305 1.86602 -0.12 0.908 -3.877553 3.443892 L2. | 2.515237 1.810256 1.39 0.165 -1.036087 6.066562 | LEV | L1. | .0663668 .0781916 0.85 0.396 -.087028 .2197616 L2. | -.066027 .0374569 -1.76 0.078 -.1395093 .0074553 | DEBT | L1. | -.0293448 .6116295 -0.05 0.962 -1.229228 1.170538 L2. | .3254192 .5211656 0.62 0.532 -.6969934 1.347832 | ROA | L1. | -.6775415 1.158015 -0.59 0.559 -2.949314 1.594231 L2. | -2.684723 1.101758 -2.44 0.015 -4.84613 -.5233155 | IVG_intense | L1. | 1.390094 2.55196 0.54 0.586 -3.616293 6.39648 L2. | -1.74212 2.698345 -0.65 0.519 -7.03568 3.551441 | KAP_intense | L1. | -.0716247 1.594696 -0.04 0.964 -3.200068 3.056818 L2. | -.6143406 1.284293 -0.48 0.632 -3.133843 1.905161 | VOR_intense | L1. | 1.185455 .9368948 1.27 0.206 -.652527 3.023437 L2. | .800335 .8815385 0.91 0.364 -.9290501 2.52972 | FamUN | 0 (omitted) AUSL_KSTR | 0 (omitted) y2012 | -.1148903 .2005894 -0.57 0.567 -.5084027 .2786221 y2013 | -.2193175 .2076353 -1.06 0.291 -.6266523 .1880173 y2014 | -.3174528 .2204653 -1.44 0.150 -.7499573 .1150517 y2015 | -.2075198 .233365 -0.89 0.374 -.6653308 .2502912 y2016 | -.3926721 .2435855 -1.61 0.107 -.8705334 .0851892 y2017 | -.2898164 .3278856 -0.88 0.377 -.9330559 .3534232 bw | 0 (omitted) bay | 0 (omitted) hes | 0 (omitted) sac | 0 (omitted) nrw | 0 (omitted) c | 0 (omitted) f | 0 (omitted) g | 0 (omitted) m | 0 (omitted) n | 0 (omitted) _cons | 1.903193 4.79805 0.40 0.692 -7.509529 11.31591 -------------+---------------------------------------------------------------- sigma_u | 3.7078212 sigma_e | 2.0251375 rho | .77023059 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(2188, 1307) = 2.12 Prob > F = 0.0000
Code:
Test: Ho: difference in coefficients not systematic chi2(22) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 76.77 Prob>chi2 = 0.0000
Code:
xtreg LOG_STN l1.LOG_SALES l2.LOG_SALES l1.PROV l2.PROV l1.LEV l2.LEV l1.DEBT l2.DEBT l1.ROA l2.ROA l1.IVG_intense l2.IVG_intense l1.KAP_intense l2.KAP_intense l1.VOR_intense l > 2.VOR_intense FamUN AUSL_KSTR y2012 y2013 y2014 y2015 y2016 y2017 bw bay hes sac nrw c f g m n, re Random-effects GLS regression Number of obs = 3,518 Group variable: idc Number of groups = 2,189 R-sq: Obs per group: within = 0.0006 min = 1 between = 0.5251 avg = 1.6 overall = 0.5054 max = 6 Wald chi2(34) = 2512.84 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ LOG_STN | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- LOG_SALES | L1. | .965822 .1913759 5.05 0.000 .5907322 1.340912 L2. | .1194994 .1908272 0.63 0.531 -.2545151 .4935139 | PROV | L1. | 1.435207 1.127386 1.27 0.203 -.7744284 3.644843 L2. | -.734266 1.142288 -0.64 0.520 -2.973109 1.504578 | LEV | L1. | -.0132113 .027322 -0.48 0.629 -.0667613 .0403388 L2. | .0014444 .0193577 0.07 0.941 -.0364961 .0393849 | DEBT | L1. | -.1789497 .3023988 -0.59 0.554 -.7716405 .4137411 L2. | -.436075 .2741722 -1.59 0.112 -.9734427 .1012927 | ROA | L1. | -.1335986 .6398764 -0.21 0.835 -1.387733 1.120536 L2. | -1.52944 .6135618 -2.49 0.013 -2.731998 -.3268806 | IVG_intense | L1. | .0267801 1.624745 0.02 0.987 -3.157661 3.211221 L2. | 1.663602 1.592992 1.04 0.296 -1.458605 4.785808 | KAP_intense | L1. | .2447735 .8247597 0.30 0.767 -1.371726 1.861273 L2. | 1.489765 .7936084 1.88 0.060 -.0656792 3.045208 | VOR_intense | L1. | -.3348842 .4761082 -0.70 0.482 -1.268039 .5982708 L2. | -.3350098 .460146 -0.73 0.467 -1.236879 .5668598 | FamUN | -.5909862 .1461903 -4.04 0.000 -.8775138 -.3044586 AUSL_KSTR | .4322607 .13506 3.20 0.001 .1675479 .6969735 y2012 | -.0770948 .1694286 -0.46 0.649 -.4091688 .2549791 y2013 | -.3837821 .1674422 -2.29 0.022 -.7119628 -.0556015 y2014 | -.1691641 .1717899 -0.98 0.325 -.505866 .1675379 y2015 | .1384244 .1810782 0.76 0.445 -.2164823 .4933311 y2016 | .068587 .1829719 0.37 0.708 -.2900313 .4272053 y2017 | -.0408278 .2510171 -0.16 0.871 -.5328124 .4511567 bw | -.1638173 .1698556 -0.96 0.335 -.4967282 .1690935 bay | -.0336689 .161638 -0.21 0.835 -.3504736 .2831357 hes | .1426045 .2052941 0.69 0.487 -.2597646 .5449737 sac | .2499873 .2373464 1.05 0.292 -.2152031 .7151778 nrw | -.0404006 .1467679 -0.28 0.783 -.3280604 .2472591 c | -.5049047 .1654168 -3.05 0.002 -.8291157 -.1806938 f | -1.284322 .2200182 -5.84 0.000 -1.71555 -.8530946 g | -.8524794 .1796878 -4.74 0.000 -1.204661 -.5002978 m | -.2227419 .1809266 -1.23 0.218 -.5773516 .1318678 n | -.1955437 .3183816 -0.61 0.539 -.8195601 .4284727 _cons | -8.119061 .4488191 -18.09 0.000 -8.99873 -7.239392 -------------+---------------------------------------------------------------- sigma_u | 1.7691576 sigma_e | 2.0251375 rho | .43284126 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Code:
Breusch and Pagan Lagrangian multiplier test for random effects LOG_STN[idc,t] = Xb + u[idc] + e[idc,t] Estimated results: | Var sd = sqrt(Var) ---------+----------------------------- LOG_STN | 13.63771 3.692926 e | 4.101182 2.025137 u | 3.129919 1.769158 Test: Var(u) = 0 chibar2(01) = 89.51 Prob > chibar2 = 0.0000
0 Response to Model with Independent lagged variables: FE, RE or POLS?
Post a Comment