I have done some preliminary unit root tests for some of the variables but I find it extremely time consuming to exporting each variable manually into Latex form.
For example, this is my variable and the first difference..
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(quarter lprod Dlprod) 80 12.13732 . 81 12.101705 -.035614014 82 12.085896 -.01580906 83 12.04684 -.03905678 84 12.071728 .02488899 85 12.050054 -.021674156 86 12.00326 -.04679394 87 12.004496 .001235962 88 11.989095 -.015400887 89 11.960452 -.028642654 90 11.980496 .020044327 91 12.01027 .02977276 92 11.940223 -.070046425 93 11.960725 .02050209 94 12.009465 .04874039 95 12.011308 .0018424988 96 12.00856 -.002747536 97 12.014071 .005511284 98 11.99644 -.017630577 99 11.999317 .002876282 100 11.99553 -.003787041 101 11.972418 -.023112297 102 11.97455 .002131462 103 12.035333 .06078339 104 12.02259 -.012742996 105 12.037267 .014677048 106 12.057285 .02001858 107 12.03192 -.02536392 108 12.012305 -.019616127 109 12.019267 .006961823 110 12.071442 .05217457 111 12.06753 -.0039129257 112 12.054868 -.01266098 113 12.05971 .004841805 114 12.07685 .017139435 115 12.121812 .04496288 116 12.07576 -.04605198 117 12.084238 .008478165 118 12.103356 .01911831 119 12.124914 .02155781 120 12.123683 -.0012311935 121 12.119718 -.003965378 122 12.083868 -.03584957 123 12.108518 .02464962 124 12.109262 .000743866 125 12.086098 -.023163795 126 12.10194 .015841484 127 12.113782 .011842728 128 12.108726 -.005056381 129 12.091665 -.01706028 130 12.09718 .005515099 131 12.111823 .014642715 132 12.111023 -.0008001328 133 12.093852 -.017170906 134 12.099945 .006093025 135 12.109635 .009690285 136 12.117045 .00741005 137 12.11408 -.0029649734 138 12.1156 .0015182495 139 12.13338 .017782211 140 12.132375 -.0010061264 141 12.1355 .003125191 142 12.145184 .00968361 143 12.14872 .003537178 144 12.156657 .007936478 145 12.156556 -.00010108948 146 12.15994 .00338459 147 12.17632 .016378403 148 12.187155 .010835648 149 12.186235 -.000919342 150 12.192647 .006411552 151 12.20609 .013442993 152 12.224665 .018574715 153 12.216696 -.007968903 154 12.199882 -.016814232 155 12.205155 .005273819 156 12.212488 .007332802 157 12.1818 -.030688286 158 12.192327 .010526657 159 12.19558 .003252983 160 12.20914 .01356125 161 12.226406 .01726532 162 12.24416 .017752647 163 12.253895 .00973606 164 12.241908 -.011986732 165 12.218095 -.02381325 166 12.227437 .009342194 167 12.223634 -.003803253 168 12.210117 -.013516426 169 12.205342 -.004775047 170 12.213876 .008533478 171 12.231914 .018037796 172 12.240483 .008569717 173 12.233493 -.006990433 174 12.242036 .0085430145 175 12.271914 .029878616 176 12.2812 .009285927 177 12.283822 .002621651 178 12.297336 .013513565 179 12.30247 .005133629 end format %tq quarter
Code:
dfgls lprod, maxlag(0) DF-GLS for lprod Number of obs = 147 DF-GLS tau 1% Critical 5% Critical 10% Critical [lags] Test Statistic Value Value Value ------------------------------------------------------------------------------ 0 -1.547 -3.522 -2.971 -2.680 . pperron lprod Phillips-Perron test for unit root Number of obs = 147 Newey-West lags = 4 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(rho) 0.431 -19.957 -13.794 -11.063 Z(t) 0.290 -3.494 -2.887 -2.577 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.9769 . dfgls Dlprod, maxlag(0) DF-GLS for Dlprod Number of obs = 146 DF-GLS tau 1% Critical 5% Critical 10% Critical [lags] Test Statistic Value Value Value ------------------------------------------------------------------------------ 0 -8.611 -3.524 -2.971 -2.681 . pperron Dlprod Phillips-Perron test for unit root Number of obs = 146 Newey-West lags = 4 ---------- Interpolated Dickey-Fuller --------- Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value ------------------------------------------------------------------------------ Z(rho) -136.215 -19.953 -13.792 -11.061 Z(t) -12.996 -3.495 -2.887 -2.577 ------------------------------------------------------------------------------ MacKinnon approximate p-value for Z(t) = 0.0000
0 Response to Exporting DF-GLS and Phillips-Perron Unit root tests into Latex
Post a Comment