Dear Stata Users,


I am attempting to apply GMM (xtabond2) to treat endogeneity and reverse causality. It is the first time that I use this model. In particular, I am trying to check the tests reported in the stata output, to be sure that everything is ok. I report below one of the models I have estimated.

Code:
xtabond2  SHROA_5w RepTrak Td_TE logTA Int_TA Bsize IndBoard Y1 Y2 Y3 Y4 Y5 Sector1 Sector2 Sector3 Sector4 Sector5 Country1-Country18 lag1GDPperCapita,
>  robust gmm(SHROA_5w RepTrak Td_TE logTA Int_TA Bsize IndBoard, lag (2 2)) iv(Y1 Y2 Y3 Y4 Y5) iv(Sector1 Sector2 Sector3 Sector4 Sector5) iv(Country1-Cou
> ntry18) small
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
  Using a generalized inverse to calculate robust weighting matrix for Hansen test.
  Difference-in-Sargan/Hansen statistics may be negative.

Dynamic panel-data estimation, one-step system GMM
------------------------------------------------------------------------------
Group variable: Company1                        Number of obs      =       297
Time variable : Year                            Number of groups   =        94
Number of instruments = 66                      Obs per group: min =         1
F(35, 93)     =     16.36                                      avg =      3.16
Prob > F      =     0.000                                      max =         4
----------------------------------------------------------------------------------
                 |               Robust
        SHROA_5w |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-----------------+----------------------------------------------------------------
         RepTrak |   .8240757   .3643529     2.26   0.026     .1005431    1.547608
           Td_TE |  -.0000894   .0008028    -0.11   0.912    -.0016836    .0015048
           logTA |   .5791236   .7792745     0.74   0.459    -.9683611    2.126608
          Int_TA |  -.1055613   .0948168    -1.11   0.268    -.2938487     .082726
           Bsize |   .2358727   .3432642     0.69   0.494     -.445782    .9175275
        IndBoard |   .0093846   .0422991     0.22   0.825    -.0746131    .0933822
              Y1 |          0  (omitted)
              Y2 |    5.76741   2.607804     2.21   0.029     .5888279    10.94599
              Y3 |   4.945185   2.295553     2.15   0.034     .3866719    9.503697
              Y4 |     4.3477   1.866018     2.33   0.022     .6421585    8.053242
              Y5 |          0  (omitted)
         Sector1 |    2.13721    1.75524     1.22   0.226    -1.348348    5.622769
         Sector2 |   3.345858   2.051973     1.63   0.106    -.7289549     7.42067
         Sector3 |          0  (omitted)
         Sector4 |   1.926695   2.326126     0.83   0.410    -2.692531    6.545921
         Sector5 |   .2156303   1.772491     0.12   0.903    -3.304185    3.735445
        Country1 |  -.3803363   5.413125    -0.07   0.944    -11.12973    10.36906
        Country2 |  -1.267118     6.9272    -0.18   0.855    -15.02316    12.48893
        Country3 |          0  (omitted)
        Country4 |   2.981356   7.630048     0.39   0.697    -12.17041    18.13312
        Country5 |   2.020135   5.026272     0.40   0.689    -7.961044    12.00131
        Country6 |   1.050245   7.457543     0.14   0.888    -13.75896    15.85945
        Country7 |     .58333   7.467397     0.08   0.938    -14.24544     15.4121
        Country8 |  -1.265909   7.970619    -0.16   0.874    -17.09398    14.56216
        Country9 |   7.628754   7.696808     0.99   0.324    -7.655581    22.91309
       Country10 |   3.032004   12.82337     0.24   0.814    -22.43267    28.49668
       Country11 |  -1.848758   8.706837    -0.21   0.832    -19.13881    15.44129
       Country12 |   1.560724   7.515723     0.21   0.836    -13.36401    16.48546
       Country13 |   5.490397   8.946452     0.61   0.541    -12.27548    23.25628
       Country14 |   5.398958    6.85746     0.79   0.433    -8.218599    19.01651
       Country15 |   1.134326   5.682236     0.20   0.842    -10.14947    12.41812
       Country16 |   .7027418    6.13279     0.11   0.909    -11.47576    12.88125
       Country17 |          0  (omitted)
       Country18 |   2.949616   5.574061     0.53   0.598    -8.119365     14.0186
lag1GDPperCapita |  -.0000125   .0001506    -0.08   0.934    -.0003116    .0002865
           _cons |  -72.54409   27.64953    -2.62   0.010    -127.4506    -17.6376
----------------------------------------------------------------------------------
Instruments for first differences equation
  Standard
    D.(Country1 Country2 Country3 Country4 Country5 Country6 Country7 Country8
    Country9 Country10 Country11 Country12 Country13 Country14 Country15
    Country16 Country17 Country18)
    D.(Sector1 Sector2 Sector3 Sector4 Sector5)
    D.(Y1 Y2 Y3 Y4 Y5)
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    L2.(SHROA_5w RepTrak Td_TE logTA Int_TA Bsize IndBoard)
Instruments for levels equation
  Standard
    Country1 Country2 Country3 Country4 Country5 Country6 Country7 Country8
    Country9 Country10 Country11 Country12 Country13 Country14 Country15
    Country16 Country17 Country18
    Sector1 Sector2 Sector3 Sector4 Sector5
    Y1 Y2 Y3 Y4 Y5
    _cons
  GMM-type (missing=0, separate instruments for each period unless collapsed)
    DL.(SHROA_5w RepTrak Td_TE logTA Int_TA Bsize IndBoard)
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z =  -2.07  Pr > z =  0.039
Arellano-Bond test for AR(2) in first differences: z =  -0.32  Pr > z =  0.748
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(30)   = 133.65  Prob > chi2 =  0.000
  (Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(30)   =  40.13  Prob > chi2 =  0.102
  (Robust, but weakened by many instruments.)

Difference-in-Hansen tests of exogeneity of instrument subsets:
  GMM instruments for levels
    Hansen test excluding group:     chi2(9)    =  25.53  Prob > chi2 =  0.002
    Difference (null H = exogenous): chi2(21)   =  14.60  Prob > chi2 =  0.843
  iv(Y1 Y2 Y3 Y4 Y5)
    Hansen test excluding group:     chi2(27)   =  35.68  Prob > chi2 =  0.123
    Difference (null H = exogenous): chi2(3)    =   4.45  Prob > chi2 =  0.217
  iv(Sector1 Sector2 Sector3 Sector4 Sector5)
    Hansen test excluding group:     chi2(26)   =  35.05  Prob > chi2 =  0.111
    Difference (null H = exogenous): chi2(4)    =   5.08  Prob > chi2 =  0.279
  iv(Country1 Country2 Country3 Country4 Country5 Country6 Country7 Country8 Country9 Country10 Country11 Country12 Country13 Country14 Country15 Country16
>  Country17 Country18)
    Hansen test excluding group:     chi2(14)   =  33.51  Prob > chi2 =  0.002
    Difference (null H = exogenous): chi2(16)   =   6.61  Prob > chi2 =  0.980



In particular:

- Significant F statistic (1) indicates that the model fitting should be ok. (ok)
- The insignificant Hansen statistics should indicate the validity of the adopted instruments in the model. (ok)
- The significance of Arellano–Bond test for AR(1) in first differences rejects the null of no first-order serial correlation. (ok)
- The test for AR(2) does not reject the null that there is no second-order serial correlation. (not ok) But I have noted that the main part of the papers adopting this model have the same results on this test.
- How should interpret the results of "Difference-in-Hansen tests of exogeneity of instrument subsets" ? Many articles do not even report it.

- I adopted the "small" option to use the small-sample adjustment. It should improve my results that could be biased by the small number of observations. Is it correct?



Any further observations on the validity/correctness of the applied model is really appreciated.


Thank you in advance for your precious support.

Nicola