I want to analyse determinants of corporate leverage in the past twenty years (with regard to recent low interest rates). Therefore, I perform a system GMM with xtabond2 as instructed by Roodman 2009 ("How to do xtabond"). I have read the paper first, of course.
My core firm-specific factors (endogenous) are: profitability, tangibility, market-to-book ratio, size and median industry leverage. I also use year dummies, which I assume to be strictly exogenous. As Roodman says, all regressors should enter the instruments matrix set up by gmmstyle() and ivstyle(), depending on the classification of regressors (predetermined, endogenous, strictly exogenous). However, even though I am strictly following Roodman, my Hansen test results are quite disappointing. I tried different sets of instruments, but the best I got was 0.05. I also use the collapse and laglimits option, but the null of instrument validity keeps getting rejected. I also reduced the number of years to ten. The null keeps getting rejected. What am I missing here?
Additionally, since I want to estimate coefficients for interest rate factors, how can I run the analysis without the year dummies? As Roodman says, one should always include the dummies. But that makes all of my interest rate factors omitted due to collinearity.
I run the command:
Code:
xtabond2 tdm_w l1.tdm_w profitablty_w mtb_w tangiblty_w size indlevm_w yr*, gmmstyle(L.(tdm_w profitablty_w mtb_w tangiblty_w size), lagl > imits (2 3) collapse) ivstyle( yr*, equation(level)) twostep robust small orthogonal
Code:
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: id Number of obs = 89422
Time variable : year Number of groups = 9135
Number of instruments = 34 Obs per group: min = 1
F(26, 9134) = 693.94 avg = 9.79
Prob > F = 0.000 max = 19
-------------------------------------------------------------------------------
| Corrected
tdm_w | Coef. Std. Err. t P>|t| [95% Conf. Interval]
--------------+----------------------------------------------------------------
tdm_w |
L1. | .7361274 .0219671 33.51 0.000 .6930671 .7791878
|
profitablty_w | .0238564 .01837 1.30 0.194 -.012153 .0598657
mtb_w | -.002019 .0023063 -0.88 0.381 -.0065398 .0025018
tangiblty_w | -.0092912 .0222226 -0.42 0.676 -.0528525 .03427
size | -.0086231 .003725 -2.31 0.021 -.0159249 -.0013212
indlevm_w | .3406029 .1060849 3.21 0.001 .1326528 .5485531
yr1 | 0 (omitted)
yr2 | -.077951 .0105912 -7.36 0.000 -.098712 -.05719
yr3 | -.0692224 .0075676 -9.15 0.000 -.0840565 -.0543883
yr4 | -.1041507 .0098989 -10.52 0.000 -.1235548 -.0847466
yr5 | -.0846216 .0070196 -12.06 0.000 -.0983815 -.0708616
yr6 | -.1429814 .0148919 -9.60 0.000 -.1721728 -.11379
yr7 | -.1097363 .0157845 -6.95 0.000 -.1406775 -.078795
yr8 | -.0866864 .0154577 -5.61 0.000 -.1169869 -.0563859
yr9 | -.0960668 .0166473 -5.77 0.000 -.1286993 -.0634344
yr10 | -.0625026 .0130212 -4.80 0.000 -.0880272 -.036978
yr11 | 0 (omitted)
yr12 | -.1575229 .0121805 -12.93 0.000 -.1813993 -.1336465
yr13 | -.1154279 .0142346 -8.11 0.000 -.1433309 -.087525
yr14 | -.0661134 .0105783 -6.25 0.000 -.0868493 -.0453775
yr15 | -.0929222 .0118196 -7.86 0.000 -.1160912 -.0697532
yr16 | -.1137083 .0150861 -7.54 0.000 -.1432805 -.0841361
yr17 | -.0761268 .012738 -5.98 0.000 -.1010962 -.0511575
yr18 | -.0620756 .0095116 -6.53 0.000 -.0807205 -.0434308
yr19 | -.1078423 .0130321 -8.28 0.000 -.1333882 -.0822964
yr20 | -.097287 .0142452 -6.83 0.000 -.1252107 -.0693633
_cons | .1296548 .0311623 4.16 0.000 .0685697 .1907398
-------------------------------------------------------------------------------
Instruments for orthogonal deviations equation
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/3).(L.tdm_w L.profitablty_w L.mtb_w L.tangiblty_w L.size) collapsed
Instruments for levels equation
Standard
yr1 yr2 yr3 yr4 yr5 yr6 yr7 yr8 yr9 yr10 yr11 yr12 yr13 yr14 yr15 yr16
yr17 yr18 yr19 yr20
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.tdm_w L.profitablty_w L.mtb_w L.tangiblty_w L.size) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -27.69 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -1.74 Pr > z = 0.082
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(7) = 109.97 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(7) = 56.49 Prob > chi2 = 0.000
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(2) = 18.67 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(5) = 37.82 Prob > chi2 = 0.000
Thanks in advance and merry christmas to everybody!
0 Response to SYS-GMM: Problem of overidentifying restrictions
Post a Comment