Dear reader,

I am a business student currently writing a thesis about the impact of global cities (dummy variable 0/1 compared to non-global cities) on the financial performance of a firm (return on sales/ROS). This forum has helped me a lot to get to know Stata, however I am currently still encountering some issues. I hope that somebody will be able to help me.

I am using Stata 13.0.

Firstly, I run an xtreg random effect analysis because my independent variable is a constant factor (it always remains 0 or 1), and therefore a fixed effects analysis will leave this variable out of the equation. I also am using some control variables such as industry and country dummies. However when adding these I am experiencing some problems.

When running an xtreg with only my IV and DV I get the following. This looks fine as the model is significant and global cities have a positive impact on ROS.
Code:
xtreg ROS GlobalCity, re

Random-effects GLS regression                   Number of obs      =      1455
Group variable: idc                             Number of groups   =       291

R-sq:  within  =      .                         Obs per group: min =         5
       between = 0.0173                                        avg =       5.0
       overall = 0.0149                                        max =         5

                                                Wald chi2(1)       =      5.09
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    0.0241

------------------------------------------------------------------------------
         ROS |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  GlobalCity |   1.100776   .4880058     2.26   0.024     .1443017    2.057249
       _cons |   .1387871   .2758799     0.50   0.615    -.4019275    .6795017
-------------+----------------------------------------------------------------
     sigma_u |  3.8025866
     sigma_e |  1.7465031
         rho |   .8257976   (fraction of variance due to u_i)
------------------------------------------------------------------------------
However, I also need to add dummies for industry and home country. I first make the industry and country variables into dummies:
Code:
tabulate Country_Factor, generate (Country_Dummy)

Country_Fac |
        tor |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |        115        7.90        7.90
          2 |        155       10.65       18.56
          3 |        105        7.22       25.77
          4 |        755       51.89       77.66
          5 |          5        0.34       78.01
          6 |         15        1.03       79.04
          7 |        200       13.75       92.78
          8 |         20        1.37       94.16
          9 |         15        1.03       95.19
         10 |         10        0.69       95.88
         11 |         10        0.69       96.56
         12 |         50        3.44      100.00
------------+-----------------------------------
      Total |      1,455      100.00

. tabulate Industry_Factor, generate (Industry_Dummy)

   Industry |      Freq.     Percent        Cum.
------------+-----------------------------------
        111 |          5        0.34        0.34
       1051 |          5        0.34        0.69
       1061 |          5        0.34        1.03
       1083 |          5        0.34        1.38
       1089 |         10        0.69        2.07
       1105 |          5        0.34        2.41
       1106 |         15        1.03        3.45
       1200 |          5        0.34        3.79
       1729 |          5        0.34        4.14
       2016 |          5        0.34        4.48
       2020 |          5        0.34        4.83
       2041 |         15        1.03        5.86
       2059 |          5        0.34        6.21
       2120 |          5        0.34        6.55
       2229 |          5        0.34        6.90
       2311 |          5        0.34        7.24
       2351 |         15        1.03        8.28
       2410 |          5        0.34        8.62
       2711 |          5        0.34        8.97
       2720 |          5        0.34        9.31
       2790 |         10        0.69       10.00
       2910 |         10        0.69       10.69
       2931 |          5        0.34       11.03
       3091 |          5        0.34       11.38
       3299 |          5        0.34       11.72
       3312 |         10        0.69       12.41
       3511 |         20        1.38       13.79
       3522 |          5        0.34       14.14
       3600 |          5        0.34       14.48
       4120 |          5        0.34       14.83
       4211 |          5        0.34       15.17
       4321 |          5        0.34       15.52
       4329 |         10        0.69       16.21
       4399 |          5        0.34       16.55
       4511 |         15        1.03       17.59
       4531 |         10        0.69       18.28
       4619 |         10        0.69       18.97
       4631 |         10        0.69       19.66
       4643 |          5        0.34       20.00
       4645 |         70        4.83       24.83
       4651 |         15        1.03       25.86
       4652 |          5        0.34       26.21
       4669 |         10        0.69       26.90
       4671 |          5        0.34       27.24
       4690 |         45        3.10       30.34
       4719 |          5        0.34       30.69
       5110 |          5        0.34       31.03
       5210 |          5        0.34       31.38
       5229 |         35        2.41       33.79
       5610 |          5        0.34       34.14
       5629 |          5        0.34       34.48
       5911 |          5        0.34       34.83
       6110 |         10        0.69       35.52
       6130 |          5        0.34       35.86
       6190 |         15        1.03       36.90
       6201 |          5        0.34       37.24
       6202 |         30        2.07       39.31
       6209 |          5        0.34       39.66
       6311 |          5        0.34       40.00
       6419 |        230       15.86       55.86
       6420 |         15        1.03       56.90
       6430 |         20        1.38       58.28
       6492 |         85        5.86       64.14
       6500 |        360       24.83       88.97
       6612 |         10        0.69       89.66
       6619 |         20        1.38       91.03
       6622 |          5        0.34       91.38
       6630 |          5        0.34       91.72
       7010 |         10        0.69       92.41
       7022 |         20        1.38       93.79
       7111 |         15        1.03       94.83
       7311 |          5        0.34       95.17
       7490 |         10        0.69       95.86
       7820 |          5        0.34       96.21
       8220 |          5        0.34       96.55
       8299 |         40        2.76       99.31
       9609 |         10        0.69      100.00
------------+-----------------------------------
      Total |      1,450      100.00
I then insert these dummies into my xtreg random effect regression:
Code:
xtreg ROS GlobalCity Country_Dummy* Industry_Dummy*, re
note: Country_Dummy12 omitted because of collinearity
note: Industry_Dummy77 omitted because of collinearity

Random-effects GLS regression                   Number of obs      =      1450
Group variable: idc                             Number of groups   =       290

R-sq:  within  = 0.0000                         Obs per group: min =         5
       between = 0.0617                                        avg =       5.0
       overall = 0.0532                                        max =         5

                                                Wald chi2(88)      =     13.22
corr(u_i, X)   = 0 (assumed)                    Prob > chi2        =    1.0000

----------------------------------------------------------------------------------
             ROS |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------+----------------------------------------------------------------
      GlobalCity |   .3391345   1.282229     0.26   0.791    -2.173989    2.852258
  Country_Dummy1 |   1.562019   2.184051     0.72   0.474    -2.718641     5.84268
  Country_Dummy2 |  -1.245224   1.972746    -0.63   0.528    -5.111736    2.621287
  Country_Dummy3 |  -1.344219   2.261727    -0.59   0.552    -5.777123    3.088685
  Country_Dummy4 |  -1.130046   1.928725    -0.59   0.558    -4.910278    2.650186
  Country_Dummy5 |   .3966315   5.870611     0.07   0.946    -11.10955    11.90282
  Country_Dummy6 |  -1.752893   3.669634    -0.48   0.633    -8.945244    5.439458
  Country_Dummy7 |   .1209821   2.049069     0.06   0.953     -3.89512    4.137084
  Country_Dummy8 |   .1797224   2.735588     0.07   0.948    -5.181932    5.541376
  Country_Dummy9 |  -.0008228   3.065887    -0.00   1.000    -6.009851    6.008205
 Country_Dummy10 |   .3278383   3.584361     0.09   0.927     -6.69738    7.353057
 Country_Dummy11 |   -.012992   3.562844    -0.00   0.997    -6.996039    6.970055
 Country_Dummy12 |          0  (omitted)
 Industry_Dummy1 |  -.6098202   5.746399    -0.11   0.915    -11.87256    10.65292
 Industry_Dummy2 |  -.1529797   5.570622    -0.03   0.978     -11.0712    10.76524
 Industry_Dummy3 |  -.2127137   5.570622    -0.04   0.970    -11.13093    10.70551
 Industry_Dummy4 |  -.1667448   5.570622    -0.03   0.976    -11.08496    10.75147
 Industry_Dummy5 |  -.1394581   4.548394    -0.03   0.976    -9.054147     8.77523
 Industry_Dummy6 |  -.1183433   5.746399    -0.02   0.984    -11.38108    11.14439
 Industry_Dummy7 |   .0889443   4.152097     0.02   0.983    -8.049016    8.226904
 Industry_Dummy8 |  -.1722452   5.570622    -0.03   0.975    -11.09046    10.74597
 Industry_Dummy9 |   -.158284   5.570622    -0.03   0.977     -11.0765    10.75993
Industry_Dummy10 |  -.2142297   5.570622    -0.04   0.969    -11.13245    10.70399
Industry_Dummy11 |  -.1148881   5.570622    -0.02   0.984    -11.03311    10.80333
Industry_Dummy12 |  -.0897403   4.152097    -0.02   0.983      -8.2277     8.04822
Industry_Dummy13 |  -.2978806   5.570622    -0.05   0.957     -11.2161    10.62034
Industry_Dummy14 |  -.0188759   5.570622    -0.00   0.997    -10.93709    10.89934
Industry_Dummy15 |   .0301024   5.570622     0.01   0.996    -10.88812    10.94832
Industry_Dummy16 |   -.263337   5.570622    -0.05   0.962    -11.18156    10.65488
Industry_Dummy17 |  -1.430459   4.636882    -0.31   0.758    -10.51858    7.657663
Industry_Dummy18 |  -.8555878   5.570622    -0.15   0.878    -11.77381    10.06263
Industry_Dummy19 |  -.1962719   5.570622    -0.04   0.972    -11.11449    10.72195
Industry_Dummy20 |  -.0506228   5.570622    -0.01   0.993    -10.96884     10.8676
Industry_Dummy21 |  -.2127382   4.548394    -0.05   0.963    -9.127427     8.70195
Industry_Dummy22 |  -.1791014   4.548394    -0.04   0.969     -9.09379    8.735587
Industry_Dummy23 |  -.1372209   5.570622    -0.02   0.980    -11.05544      10.781
Industry_Dummy24 |  -.1514464   5.570622    -0.03   0.978    -11.06967    10.76677
Industry_Dummy25 |   .4825144   6.516916     0.07   0.941    -12.29041    13.25543
Industry_Dummy26 |  -.1363298   4.548394    -0.03   0.976    -9.051018    8.778359
Industry_Dummy27 |  -.0946659   4.147926    -0.02   0.982    -8.224452     8.03512
Industry_Dummy28 |   -1.60991   5.723206    -0.28   0.778    -12.82719    9.607367
Industry_Dummy29 |   .1384163   5.880819     0.02   0.981    -11.38778    11.66461
Industry_Dummy30 |   -3.22646   5.744805    -0.56   0.574    -14.48607     8.03315
Industry_Dummy31 |  -1.470912   5.818279    -0.25   0.800    -12.87453    9.932706
Industry_Dummy32 |  -.2251125   5.570622    -0.04   0.968    -11.14333    10.69311
Industry_Dummy33 |  -.1444849   4.548394    -0.03   0.975    -9.059173    8.770204
Industry_Dummy34 |  -.1917948   5.570622    -0.03   0.973    -11.11001    10.72642
Industry_Dummy35 |   -.189695   4.152097    -0.05   0.964    -8.327655    7.948265
Industry_Dummy36 |  -.1832801   4.548394    -0.04   0.968    -9.097969    8.731408
Industry_Dummy37 |  -.0977158   4.548394    -0.02   0.983    -9.012404    8.816973
Industry_Dummy38 |  -.2629284   4.548394    -0.06   0.954    -9.177617     8.65176
Industry_Dummy39 |  -.2186096   5.570622    -0.04   0.969    -11.13683    10.69961
Industry_Dummy40 |  -.1766929   3.438263    -0.05   0.959    -6.915564    6.562178
Industry_Dummy41 |  -.1798694   4.152097    -0.04   0.965    -8.317829    7.958091
Industry_Dummy42 |  -.1562076   5.570622    -0.03   0.978    -11.07443    10.76201
Industry_Dummy43 |  -.1385153   4.548394    -0.03   0.976    -9.053204    8.776173
Industry_Dummy44 |  -.2096007   5.570622    -0.04   0.970    -11.12782    10.70862
Industry_Dummy45 |   -.182441   3.555643    -0.05   0.959    -7.151374    6.786492
Industry_Dummy46 |  -1.735188   5.723206    -0.30   0.762    -12.95247    9.482089
Industry_Dummy47 |  -1.785664   5.723206    -0.31   0.755    -13.00294    9.431613
Industry_Dummy48 |  -.2227656   5.570622    -0.04   0.968    -11.14098    10.69545
Industry_Dummy49 |  -.1816429   3.646828    -0.05   0.960    -7.329295    6.966009
Industry_Dummy50 |  -.2129014   5.570622    -0.04   0.970    -11.13112    10.70532
Industry_Dummy51 |  -1.511986   5.818279    -0.26   0.795     -12.9156    9.891632
Industry_Dummy52 |  -.1250469   5.570622    -0.02   0.982    -11.04327    10.79317
Industry_Dummy53 |   -.156278   4.548394    -0.03   0.973    -9.070966     8.75841
Industry_Dummy54 |  -.2354837   5.570622    -0.04   0.966     -11.1537    10.68274
Industry_Dummy55 |  -.0929688   4.182443    -0.02   0.982    -8.290406    8.104468
Industry_Dummy56 |  -.1025349   5.570622    -0.02   0.985    -11.02075    10.81568
Industry_Dummy57 |  -.0560073   3.713748    -0.02   0.988     -7.33482    7.222805
Industry_Dummy58 |  -.3288409   5.570622    -0.06   0.953    -11.24706    10.58938
Industry_Dummy59 |  -.1872737   5.570622    -0.03   0.973    -11.10549    10.73095
Industry_Dummy60 |  -1.256073   3.452591    -0.36   0.716    -8.023027    5.510881
Industry_Dummy61 |  -1.601539   4.354671    -0.37   0.713    -10.13654    6.933459
Industry_Dummy62 |   .3996769   3.939025     0.10   0.919     -7.32067    8.120024
Industry_Dummy63 |   -.962859   3.561646    -0.27   0.787    -7.943557    6.017839
Industry_Dummy64 |   .4252307   3.382064     0.13   0.900    -6.203493    7.053955
Industry_Dummy65 |  -.7119034   4.595509    -0.15   0.877    -9.718935    8.295128
Industry_Dummy66 |   .1691161   3.955914     0.04   0.966    -7.584333    7.922565
Industry_Dummy67 |  -.0209469   5.570622    -0.00   0.997    -10.93917    10.89727
Industry_Dummy68 |   .1740366   5.570622     0.03   0.975    -10.74418    11.09226
Industry_Dummy69 |  -.1546994   4.548394    -0.03   0.973    -9.069388    8.759989
Industry_Dummy70 |  -.1687401   3.939025    -0.04   0.966    -7.889087    7.551607
Industry_Dummy71 |  -.1802139   4.152097    -0.04   0.965    -8.318174    7.957746
Industry_Dummy72 |  -.1175211   5.570622    -0.02   0.983    -11.03574     10.8007
Industry_Dummy73 |  -.1624274   4.548394    -0.04   0.972    -9.077116    8.752261
Industry_Dummy74 |  -.2068212   5.570622    -0.04   0.970    -11.12504     10.7114
Industry_Dummy75 |  -.1991742   5.570622    -0.04   0.971    -11.11739    10.71904
Industry_Dummy76 |   .1478236   3.595821     0.04   0.967    -6.899856    7.195504
Industry_Dummy77 |          0  (omitted)
           _cons |   1.349589    3.75019     0.36   0.719    -6.000649    8.699826
-----------------+----------------------------------------------------------------
         sigma_u |  4.4805976
         sigma_e |  1.7494758
             rho |  .86771223   (fraction of variance due to u_i)
----------------------------------------------------------------------------------
As you can see the model becomes completely insignificant (Prob > chi2 = 1.0000). I cannot understand why this is the case, or if I have created wrong dummy variables or even used wrong commands. Anybody has a thought? Looking forward to your reply, thank you!