My question: Would you know why the random-effects portions of my (i) random-intercept only and (ii) random-intercept & random-slope models' RESULTS are not outputting to Excel properly?
Version is STATA15
Some background:
- This is an unbalanced longitudinal dataset for K-8 students, where each student can have either 2 or 3 years of data. The person-unit variable is record_id (unique to each student) and the time variable is year (values: 1, 2, 3). In the long dataset, n=4581
- I ran a random-effects model assessing the longitudinal association between proportion of absences (variable name: absenty_p, it is a continuous variable) and the child's mean BMI (variable name: bmim). Although BMI is an age and gender-adjusted measure, I wanted to see if random intercepts by the grade-levels (variable name: grade, values: 0-8) are statistically significant or not. I also wanted to see if the random slopes by grade are stat sig or not. So, I ran the following model:
- RANDOM INT-ONLY: xi: mixed: absenty_p bmim || grade:
- RANDOM INT & RAND SLOPE: xi: mixed: absenty_p bmim || grade: bmim
Code:
eststo clear
xi: mixed absenty_p bmim || grade:
esttab using "/Users/maishahuq/Desktop/BMI-A-A/MLM_bmi_absent_grade.csv", replace se ar2
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = 3895.8906
Iteration 1: log likelihood = 3895.8906
Computing standard errors:
Mixed-effects ML regression Number of obs = 2,676
Group variable: grade Number of groups = 9
Obs per group:
min = 225
avg = 297.3
max = 343
Wald chi2(1) = 0.08
Log likelihood = 3895.8906 Prob > chi2 = 0.7762
------------------------------------------------------------------------------
absenty_p | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
bmim | .0000584 .0002054 0.28 0.776 -.0003441 .0004609
_cons | .0564974 .0050627 11.16 0.000 .0465748 .0664201
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
grade: Identity |
var(_cons) | .0000597 .0000336 .0000198 .00018
-----------------------------+------------------------------------------------
var(Residual) | .0031639 .0000866 .0029986 .0033384
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 29.82 Prob >= chibar2 = 0.0000
| (1) | ||
| absenty_p | ||
| absenty_p | ||
| bmim | 0.0000584 | |
| (0.000205) | ||
| _cons | 0.0565*** | |
| (0.00506) | ||
| lns1_1_1 | ||
| _cons | -4.863*** | |
| (0.282) | ||
| lnsig_e | ||
| _cons | -2.878*** | |
| (0.0137) | ||
| N | 2676 | |
| adj. R-sq | ||
| Standard errors in parentheses | ||
| ="* p<0.05 | ** p<0.01 | *** p<0.001" |
0 Response to How to output random-intercepts and random-slope information to Excel properly?
Post a Comment