I am estimating the impact of institutional integrity on carbon emissions using quantile regression for an unbalanced dataset that runs from 1984 to 2016 for about 123 countries. I'm interested in quantile regression to view the relationship at different points in the conditional distribution of y.
Because T spans over 30 years, therefore i have differenced my variables. Thus 'd' in front of every variable.
Definition of variables"
dlrgdp = Log of real per capita GDP, dlrgdp2 = squared dlrgdp, dfrleg = institutional integrity, dfrleg2 = squared dfrleg, dlpopden = log of population density, dlenguse = log of energy use, dfr_lrgdp = interaction term between institutional integrity and GDP
Code:
qregpd dlpccarb dlrgdp dlrgdp2 dfrleg dfrleg2 dlpopden dlenguse dfr_lrgdp dfr2_lrgdp2 , quantile(.25) id(cty) fix(year) optimize(mcmc) noisy draws(1000) burn(100) arate(.5) qregpd dlpccarb dlrgdp dlrgdp2 dfrleg dfrleg2 dlpopden dlenguse dfr_lrgdp dfr2_lrgdp2 , quantile(.75) id(cty) fix(year) optimize(mcmc) noisy draws(1000) burn(100) arate(.5)
Code:
Quantile Regression for Panel Data (QRPD)
Number of obs: 3231
Number of groups: 120
Min obs per group: 3
Max obs per group: 30
------------------------------------------------------------------------------
dlpccarb | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
dlrgdp | .5437956 .0590741 9.21 0.000 .4280124 .6595787
dlrgdp2 | -.0184208 .0035656 -5.17 0.000 -.0254094 -.0114323
dfrleg | -2.656076 .1897324 -14.00 0.000 -3.027944 -2.284207
dfrleg2 | 1.623832 .0635615 25.55 0.000 1.499253 1.74841
dlpopden | -.3040617 .0167634 -18.14 0.000 -.3369172 -.2712061
dlenguse | .8296468 .0032042 258.93 0.000 .8233667 .8359269
dfr_lrgdp | .2209018 .0216103 10.22 0.000 .1785463 .2632573
dfr2_lrgdp2 | -.0129949 .0008071 -16.10 0.000 -.0145767 -.011413
------------------------------------------------------------------------------
No excluded instruments - standard QRPD estimation.
MCMC diagonstics:
Mean acceptance rate: 0.473
Total draws: 1000
Burn-in draws: 100
Draws retained: 900
Value of objective function:
Mean: -74.3432
Min: -84.6212
Max: -70.4597
MCMC notes:
*Point estimates correspond to mean of draws.
*Standard errors are derived from variance of draws.These results are too good to be true. Now I have 3 questions related to these results.
1). How can I check the validity of these results? Is there any post estimation command that verifies that these results are correct?
2). Would it be correct to use -qplot- in panel data ? if no, then what command would be the most appropriate to generate a graph similar to that generated by -qplot-?
3). Is there a command similar to grqreg to generate graphs over quantiles in a panel data setting?
0 Response to QREGPD post estimation and graphs
Post a Comment