I have run the below model (code shown below) and have some questions about the first 3 independent variables – dar, dar_sq, and dar_cub.
Description of variables:
- dar = continuous
- dar_sq = dar^2
- dar_cub = dar^3
- I am trying to decide how to model the relationship between dar and the dependent variable. Dar^3 is statistically significant. Does that mean it must be included in the model along with dar and dar^2? I understand including dar^3 means that there are 2 changes in direction, something I have a hard time making sense of here.
- I looked at a simple scatterplot between dar and lex (shown below). There does not seem to be a clear relationship. Also, given the data structure requires the use of a mixed model, I am unsure whether a simple scatterplot is correct. I also plotted a spaghetti plot with id for one of the random effects (bor)– shown below.
- I’m having hard time interpreting what the coefficients on dar, dar_sq, and dar_cub mean. Is there a way after the mixed command to create a plot what the relationship looks like for example?
Code:
. mixed lex dar dar_sq dar_cub alp mup zol mupbyzol || _all: R.bor || _all: R.mol || _all: R.pop, reml Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -55055.98 Iteration 1: log restricted-likelihood = -55055.98 Computing standard errors: Mixed-effects REML regression Number of obs = 12,040 Group variable: _all Number of groups = 1 Obs per group: min = 12,040 avg = 12,040.0 max = 12,040 Wald chi2(7) = 558.36 Log restricted-likelihood = -55055.98 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ lex | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- dar | -.1442413 .0679903 -2.12 0.034 -.2774999 -.0109827 dar_sq | .0039578 .0017025 2.32 0.020 .000621 .0072946 dar_cub | -.0000359 .0000113 -3.19 0.001 -.000058 -.0000138 alp | 7.56537 1.792743 4.22 0.000 4.051658 11.07908 mup | 18.59015 2.898774 6.41 0.000 12.90866 24.27164 zol | 11.27925 .6055326 18.63 0.000 10.09243 12.46607 mupbyzol | -6.30276 .8396218 -7.51 0.000 -7.948388 -4.657131 _cons | 70.63327 2.85485 24.74 0.000 65.03787 76.22868 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ _all: Identity | var(R.bor) | 81.68924 16.43907 55.06427 121.1881 -----------------------------+------------------------------------------------ _all: Identity | var(R.mol) | 47.87758 14.45347 26.49525 86.51596 -----------------------------+------------------------------------------------ _all: Identity | var(R.pop) | 42.53744 8.664709 28.53546 63.41 -----------------------------+------------------------------------------------ var(Residual) | 528.271 6.84953 515.0153 541.8679 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 2653.43 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. scatter lex dar spagplot lex dar, id(bor)
0 Response to Help interpreting mixed model with cubic term
Post a Comment