To overcome the generated regressor problem, I perform bootstrapping to correct the standard errors by using the following code:
Code:
xtprobit y1 x1 x2 x3, vce(bs)
Code:
xtprobit AcquirerStatus LeverageDeficit Size Markettobook Profitability, vce(cluster CompanyNo)
Calculating robust standard errors:
Random-effects probit regression Number of obs = 2,547
Group variable: CompanyNo Number of groups = 248
Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 10.3
max = 23
Integration method: mvaghermite Integration pts. = 12
Wald chi2(4) = 67.27
Log pseudolikelihood = -668.40718 Prob > chi2 = 0.0000
(Std. Err. adjusted for 248 clusters in CompanyNo)
---------------------------------------------------------------------------------
| Robust
AcquirerStatus | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
LeverageDeficit | -.4867099 .2280932 -2.13 0.033 -.9337643 -.0396555
Size | .2556389 .091086 2.81 0.005 .0771137 .4341641
Markettobook | -.0000113 1.82e-06 -6.20 0.000 -.0000148 -7.70e-06
Profitability | .14997 .3930542 0.38 0.703 -.6204021 .9203421
_cons | -3.788979 .7845155 -4.83 0.000 -5.326601 -2.251357
----------------+----------------------------------------------------------------
/lnsig2u | -1.676469 .3295443 -2.322364 -1.030574
----------------+----------------------------------------------------------------
sigma_u | .4324734 .0712596 .3131159 .5973292
rho | .1575636 .0437428 .0892877 .2629729
---------------------------------------------------------------------------------
Code:
. xtprobit AcquirerStatus LeverageDeficit Size Markettobook Profitability, vce(bs)
Random-effects probit regression Number of obs = 2,547
Group variable: CompanyNo Number of groups = 248
Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 10.3
max = 23
Integration method: mvaghermite Integration pts. = 12
Wald chi2(4) = 22.16
Log likelihood = -668.40718 Prob > chi2 = 0.0002
(Replications based on 248 clusters in CompanyNo)
---------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
AcquirerStatus | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------
LeverageDeficit | -.4867099 .2300963 -2.12 0.034 -.9376904 -.0357294
Size | .2556389 .0833188 3.07 0.002 .0923371 .4189407
Markettobook | -.0000113 .086467 -0.00 1.000 -.1694835 .169461
Profitability | .14997 .3159822 0.47 0.635 -.4693438 .7692838
_cons | -3.788979 .7239035 -5.23 0.000 -5.207804 -2.370154
----------------+----------------------------------------------------------------
/lnsig2u | -1.676469 .3515036 -2.365403 -.9875343
----------------+----------------------------------------------------------------
sigma_u | .4324734 .076008 .3064497 .6103229
rho | .1575636 .0466577 .0858492 .2713994
---------------------------------------------------------------------------------
LR test of rho=0: chibar2(01) = 22.76 Prob >= chibar2 = 0.000
Thanks for the comments in advance!
0 Response to Bootstrapping standard errors moves the p-value of a variable from 0.000 to 1.000
Post a Comment