I am using -melogit- to compare hospital admission rates between 177 public hospitals while adjusting for patient and hospital factors. The outcome is admission (yes/no), so I'm using -melogit-. I have a set of patient-level and hospital-level variables (eg hospital in a rural or urban area & its capacity/funding - referred to in NSW as 'peer-group') in the fixed effect part of the model, and a random intercept for hospital.
This is the model:
Code:
melogit admitted i.sex age_c i.language_english i.ATS_urgent i.arrival_ambulance ib(last).afterhours i.LHD_metropolitan i.peer_group_simplified || hospital_encoded:,or
Code:
Mixed-effects logistic regression Number of obs = 176,610 Group variable: hospital_enc~d Number of groups = 177 Obs per group: min = 3 avg = 997.8 max = 5,346 Integration method: mvaghermite Integration pts. = 7 Wald chi2(13) = 26383.41 Log likelihood = -75965.437 Prob > chi2 = 0.0000 --------------------------------------------------------------------------------------- admitted | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- sex | Female | 1.162512 .015033 11.64 0.000 1.133418 1.192353 age_c | 1.031678 .0003643 88.31 0.000 1.030964 1.032392 | language_english | English | 1.0744 .0251603 3.06 0.002 1.026201 1.124862 | ATS_urgent | Urgent | 2.263905 .0304137 60.82 0.000 2.205073 2.324307 | arrival_ambulance | Ambulance | 4.393615 .05869 110.81 0.000 4.280077 4.510164 | afterhours | Working hours | 1.141963 .0147982 10.24 0.000 1.113324 1.171338 | LHD_metropolitan | Metropolitan LHDs | 1.210663 .2016394 1.15 0.251 .8734806 1.678005 | peer_group_simplified | Major | .6380802 .1488773 -1.93 0.054 .4038986 1.008041 District | .2936127 .0686239 -5.24 0.000 .1857076 .4642157 Community | .4790235 .1225161 -2.88 0.004 .2901694 .7907913 Multi-purpose | .4260602 .1066784 -3.41 0.001 .260822 .6959814 Sub-acute | .3520253 .1833226 -2.00 0.045 .1268521 .9769001 Ungrouped | .2191504 .0847144 -3.93 0.000 .1027314 .4674997 | _cons | .1309571 .0305555 -8.71 0.000 .0828939 .2068881 ----------------------+---------------------------------------------------------------- hospital_encoded | var(_cons)| .3905498 .0502347 .303522 .5025307 --------------------------------------------------------------------------------------- Note: Estimates are transformed only in the first equation. Note: _cons estimates baseline odds (conditional on zero random effects). LR test vs. logistic model: chibar2(01) = 6088.61 Prob >= chibar2 = 0.0000
However I am confused about what the next step should be.
Option 1. I understand I run -predict p, mu- to obtain predicted probabilities that will account for both the fixed and the random component of my model. This would allow me to calculate a risk-adjusted admission rate for each hospital following methods described here:
HTML Code:
https://journals.sagepub.com/doi/abs/10.1177/1536867X19854021?journalCode=stja
HTML Code:
https://pubmed.ncbi.nlm.nih.gov/25742812/
Thanks in advance,
Giovanni
0 Response to Generating risk-adjusted hospital admission rates using Empirical Bayes Means with melogit
Post a Comment