A factor variable named w equals 0, 1, 2, or 3, so it can be used in estimation with i.w , or with the equivalent indicator variables w1 = (w==1) , w2 = (w==2), and w3 = (w==3) . A binary outcome is y, and another continuous variable is x. I estimate:
Code:
hetprobit y x i.w, het(x i.w)
Code:
hetprobit y x w1 w2 w3, het(x i.w)
The difference happens for i.w in the main term, but seemingly not in the heteroskedasticity term. Putting "set seed 58233" just before both calls to hetprobit does not make the results the same (and indeed the results of hetprobit do not seem to depend on random numbers). Probit models without the heteroskedasticity term seem to converge to the same result regardless whether "i.w" or "w1 w2 w3" is used; I'm only seeing a difference for hetprobit.
Does anyone see a reason why this would happen?
Below I show contiguous Stata output that (1) documents key aspects of the data, and (2) demonstrates the difference in estimates. I've suppressed the ML logs with nolog options, but the iterations show 70 full model iterations using "i.w" versus 65 using "w1 w2 w3" and with "(not concave)" displayed at different iteration numbers. As I said the differences are small, but noticeable.
Code:
. di _N 250 . su , sep(0) Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- y | 250 .288 .4537395 0 1 x | 250 4.441809 .7600443 .8457781 5.457211 w | 250 .928 1.057967 0 3 w1 | 250 .144 .351794 0 1 w2 | 250 .26 .4395142 0 1 w3 | 250 .088 .2838632 0 1 . tab w, mi w | Freq. Percent Cum. ------------+----------------------------------- 0 | 127 50.80 50.80 1 | 36 14.40 65.20 2 | 65 26.00 91.20 3 | 22 8.80 100.00 ------------+----------------------------------- Total | 250 100.00 . assert w1==(w==1) & w2==(w==2) & w3==(w==3) // The omitted category is w==0. . hetprobit y x i.w, het(x i.w) nolog Heteroskedastic probit model Number of obs = 250 Zero outcomes = 178 Nonzero outcomes = 72 Wald chi2(4) = 1.97 Log likelihood = -106.9522 Prob > chi2 = 0.7413 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- y | x | .4855019 .7097267 0.68 0.494 -.9055368 1.876541 | w | 1 | 3.1424 4.608419 0.68 0.495 -5.889936 12.17473 2 | 3.590161 4.310631 0.83 0.405 -4.858521 12.03884 3 | -2234.108 24823.36 -0.09 0.928 -50887 46418.78 | _cons | -5.399992 3.985377 -1.35 0.175 -13.21119 2.411204 -------------+---------------------------------------------------------------- lnsigma | x | .2204246 .3146317 0.70 0.484 -.3962421 .8370914 | w | 1 | -1.411461 2.456378 -0.57 0.566 -6.225874 3.402952 2 | -1.073397 2.581648 -0.42 0.678 -6.133333 3.98654 3 | 6.172341 11.19192 0.55 0.581 -15.76341 28.10809 ------------------------------------------------------------------------------ LR test of lnsigma=0: chi2(4) = 1.86 Prob > chi2 = 0.7616 . di %16.15g e(ll) -106.95224858907 . hetprobit y x w1 w2 w3, het(x i.w) nolog Heteroskedastic probit model Number of obs = 250 Zero outcomes = 178 Nonzero outcomes = 72 Wald chi2(4) = 1.97 Log likelihood = -106.9523 Prob > chi2 = 0.7415 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- y | x | .4854962 .70974 0.68 0.494 -.9055687 1.876561 w1 | 3.142395 4.60851 0.68 0.495 -5.890119 12.17491 w2 | 3.590151 4.310695 0.83 0.405 -4.858656 12.03896 w3 | -2148.256 24828.55 -0.09 0.931 -50811.32 46514.81 _cons | -5.399961 3.985342 -1.35 0.175 -13.21109 2.411167 -------------+---------------------------------------------------------------- lnsigma | x | .2204242 .3146381 0.70 0.484 -.3962551 .8371035 | w | 1 | -1.411471 2.456464 -0.57 0.566 -6.226051 3.403109 2 | -1.073407 2.581738 -0.42 0.678 -6.13352 3.986707 3 | 6.133164 11.63331 0.53 0.598 -16.6677 28.93402 ------------------------------------------------------------------------------ LR test of lnsigma=0: chi2(4) = 1.86 Prob > chi2 = 0.7616 . di %16.15g e(ll) -106.95225620844
0 Response to Hetprobit with factor variable
Post a Comment