I am using the -margins- command to estimate the impact of several binary explanatory variables on log of contribution (in $)(all my explanatory variables are binary). I use the following command:
Code:
margins, dyex(*) predict(ystar(0 .) eq(#3)) atmeans
HTML Code:
Conditional marginal effects Number of obs = 4,974
Model VCE : Robust
Expression : E(lny3*0<lny3), predict(ystar(0 .) eq(#3))
dy/ex w.r.t. : max_10 max_20 line_5 age40_65 above65 female below100000 _149999 _199999 married
envdonor farmeryes perfield sughigh
at : max_10 = .3365501 (mean)
max_20 = .3329312 (mean)
line_5 = .4989948 (mean)
age40_65 = .6410097 (mean)
above65 = .3049866 (mean)
female = .2427064 (mean)
below100000 = .153114 (mean)
_149999 = .3368508 (mean)
_199999 = .2563625 (mean)
married = .7696129 (mean)
envdonor = .3187746 (mean)
farmeryes = .5028146 (mean)
perfield = .5 (mean)
sughigh = .5006031 (mean)
Delta-method
dy/ex Std. Err. z P>z [95% Conf. Interval]
max_10 .0631488 .0587649 1.07 0.283 -.0520282 .1783258
max_20 .0939937 .0572245 1.64 0.100 -.0181643 .2061518
line_5 -.0602471 .0689658 -0.87 0.382 -.1954175 .0749234
age40_65 .7288097 .3987188 1.83 0.068 -.0526647 1.510284
above65 .3905804 .1965155 1.99 0.047 .0054171 .7757436
female -.0632363 .0924284 -0.68 0.494 -.2443926 .11792
below100000 .0536459 .0590108 0.91 0.363 -.0620131 .1693049
_149999 -.174858 .0965162 -1.81 0.070 -.3640264 .0143103
_199999 -.060281 .0737858 -0.82 0.414 -.2048985 .0843366
married .0042625 .3035701 0.01 0.989 -.5907239 .5992489
envdonor 0 (omitted)
farmeryes .0747624 .0698082 1.07 0.284 -.0620592 .2115839
perfield -.0302773 .0667833 -0.45 0.650 -.1611702 .1006156
sughigh .0542216 .0663194 0.82 0.414 -.0757621 .1842053
Thanks,
Anwesha
0 Response to Interpreting AME after margins command
Post a Comment