I am running the below 2 models in Stata. They have different dependent variables, and some similar independent variables (certain independent variables were removed since they were statistically insignificant). Below please see the code and results.
I am interested in a variable that is in both models – dar. In the first model, the coefficient on dar is -.062(P<0.001) and the second model the value of the coefficient on dar is 0.058 (P=0.001). I am trying to evaluate whether dar “explains” the first dependent variable or the second dependent variable better. In the first model, values of the dependent variable are mostly between 0 and 100, but with some values above 100 and below 0. In the second model, the values of dependent range from 0-100.
Can I simply compare the magnitude of the coefficients on dar determine this? For example, since the magnitude is larger in the first model, can I conclude that dar “explains” dependent variable 1 better? Is there a better way to do this, for example, just have dar as the only independent variable and compare BIC?
Thanks!!!
Code:
. mixed dep1 dar alp mup zol mupbyzol || _all: R.bor || _all: R.mol || _all: R.pop, reml Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -37391.644 Iteration 1: log restricted-likelihood = -37391.644 Computing standard errors: Mixed-effects REML regression Number of obs = 8,476 Group variable: _all Number of groups = 1 Obs per group: min = 8,476 avg = 8,476.0 max = 8,476 Wald chi2(5) = 226.97 Log restricted-likelihood = -37391.644 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ dep1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- dar | -.0624097 .0153719 -4.06 0.000 -.092538 -.0322814 alp | 8.150469 1.526269 5.34 0.000 5.159037 11.1419 mup | 8.152124 2.433408 3.35 0.001 3.382732 12.92152 zol | 6.486658 .7586855 8.55 0.000 4.999661 7.973654 mupbyzol | -1.694464 .915423 -1.85 0.064 -3.48866 .0997322 _cons | 81.06523 2.629083 30.83 0.000 75.91233 86.21814 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ _all: Identity | var(R.bor) | 63.10153 13.75592 41.16052 96.73842 -----------------------------+------------------------------------------------ _all: Identity | var(R.mol) | 18.28294 7.468788 8.209574 40.7166 -----------------------------+------------------------------------------------ _all: Identity | var(R.pop) | 30.08839 6.280492 19.9859 45.29751 -----------------------------+------------------------------------------------ var(Residual) | 381.8593 5.912967 370.4442 393.6262 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 1810.17 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. . . mixed dep2 dar alp mup zol alpbymup || _all: R.bor || _all: R.mol || _all: R.pop, reml Performing EM optimization: Performing gradient-based optimization: Iteration 0: log restricted-likelihood = -38246.114 Iteration 1: log restricted-likelihood = -38246.114 Computing standard errors: Mixed-effects REML regression Number of obs = 8,463 Group variable: _all Number of groups = 1 Obs per group: min = 8,463 avg = 8,463.0 max = 8,463 Wald chi2(5) = 246.42 Log restricted-likelihood = -38246.114 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ dep2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- dar | .0576079 .0172886 3.33 0.001 .0237229 .0914928 alp | -9.863186 2.068844 -4.77 0.000 -13.91805 -5.808327 mup | -9.944255 3.193489 -3.11 0.002 -16.20338 -3.685131 zol | -6.253207 .4719679 -13.25 0.000 -7.178247 -5.328167 alpbymup | -2.215597 1.016369 -2.18 0.029 -4.207643 -.2235513 _cons | 49.90762 3.607263 13.84 0.000 42.83752 56.97773 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ _all: Identity | var(R.bor) | 185.1551 38.18656 123.59 277.3884 -----------------------------+------------------------------------------------ _all: Identity | var(R.mol) | 34.39981 14.81115 14.79325 79.99239 -----------------------------+------------------------------------------------ _all: Identity | var(R.pop) | 49.99171 10.22253 33.48424 74.63724 -----------------------------+------------------------------------------------ var(Residual) | 470.1817 7.287957 456.1124 484.685 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(3) = 2918.94 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference.
0 Response to does an independent variable predict dependent variable 1 or 2 better
Post a Comment