Dear all,
I want to use the command--sgmediation- to analyze the mediation of panel data.I read that --sgmediation--can not work for panel data.But I think that this command also works for panel data.
Here is my codes.Do you think it is right or wrong?
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input double(id year y x1 x2 x3)
1 1 3 2 7 3
1 2 2 1 6 4
1 3 3 2 6 5
1 4 4 2 5 6
1 5 5 3 4 7
2 1 6 4 5 8
2 2 5 3 6 8
2 3 5 3 5 7
2 4 4 2 4 6
2 5 3 3 5 5
3 1 4 5 6 4
3 2 5 6 7 3
3 3 6 7 8 6
3 4 5 8 8 7
3 5 4 6 7 8
3 6 3 4 6 9
4 1 6 5 5 8
4 2 5 6 4 7
4 3 6 7 3 6
4 4 7 7 . 5
4 5 8 6 2 4
4 6 9 5 4 3
end
 xi:sgmediation y,mv(x2) iv(x1) cv(x3 i.id i.year)
i.id              _Iid_1-4            (naturally coded; _Iid_1 omitted)
i.year            _Iyear_1-6          (naturally coded; _Iyear_1 omitted)

Model with dv regressed on iv (path c)

      Source |       SS           df       MS      Number of obs   =        21
-------------+----------------------------------   F(10, 10)       =      2.63
       Model |  41.4558892        10  4.14558892   Prob > F        =    0.0718
    Residual |  15.7822061        10  1.57822061   R-squared       =    0.7243
-------------+----------------------------------   Adj R-squared   =    0.4485
       Total |  57.2380952        20  2.86190476   Root MSE        =    1.2563

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |      0.896      0.398     2.25   0.048        0.009       1.782
          x3 |     -0.170      0.164    -1.04   0.325       -0.534       0.195
      _Iid_2 |      0.610      0.922     0.66   0.523       -1.445       2.664
      _Iid_3 |     -2.615      1.866    -1.40   0.191       -6.773       1.542
      _Iid_4 |     -0.291      1.857    -0.16   0.879       -4.429       3.846
    _Iyear_2 |     -0.542      0.889    -0.61   0.556       -2.524       1.439
    _Iyear_3 |     -0.379      0.937    -0.41   0.694       -2.466       1.707
    _Iyear_4 |     -0.223      1.005    -0.22   0.829       -2.462       2.016
    _Iyear_5 |     -0.155      0.910    -0.17   0.868       -2.184       1.873
    _Iyear_6 |      1.724      1.254     1.37   0.199       -1.071       4.518
       _cons |      2.717      1.254     2.17   0.056       -0.077       5.510
------------------------------------------------------------------------------

Model with mediator regressed on iv (path a)

      Source |       SS           df       MS      Number of obs   =        21
-------------+----------------------------------   F(10, 10)       =      3.55
       Model |  38.1930886        10  3.81930886   Prob > F        =    0.0290
    Residual |  10.7592924        10  1.07592924   R-squared       =    0.7802
-------------+----------------------------------   Adj R-squared   =    0.5604
       Total |   48.952381        20  2.44761905   Root MSE        =    1.0373

------------------------------------------------------------------------------
          x2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x1 |      0.307      0.328     0.94   0.372       -0.425       1.039
          x3 |      0.014      0.135     0.11   0.918       -0.287       0.315
      _Iid_2 |     -0.933      0.761    -1.23   0.248       -2.629       0.763
      _Iid_3 |      0.122      1.541     0.08   0.938       -3.310       3.555
      _Iid_4 |     -3.274      1.533    -2.14   0.059       -6.690       0.143
    _Iyear_2 |      0.004      0.734     0.00   0.996       -1.632       1.640
    _Iyear_3 |     -0.484      0.773    -0.63   0.545       -2.207       1.239
    _Iyear_4 |     -0.843      0.830    -1.02   0.334       -2.691       1.006
    _Iyear_5 |     -1.407      0.752    -1.87   0.091       -3.082       0.267
    _Iyear_6 |     -0.353      1.036    -0.34   0.741       -2.660       1.955
       _cons |      5.460      1.035     5.27   0.000        3.153       7.767
------------------------------------------------------------------------------

Model with dv regressed on mediator and iv (paths b and c')

      Source |       SS           df       MS      Number of obs   =        21
-------------+----------------------------------   F(11, 9)        =      2.24
       Model |  41.9107839        11  3.81007126   Prob > F        =    0.1184
    Residual |  15.3273113         9  1.70303459   R-squared       =    0.7322
-------------+----------------------------------   Adj R-squared   =    0.4049
       Total |  57.2380952        20  2.86190476   Root MSE        =     1.305

------------------------------------------------------------------------------
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          x2 |     -0.206      0.398    -0.52   0.618       -1.106       0.694
          x1 |      0.959      0.431     2.23   0.053       -0.016       1.934
          x3 |     -0.167      0.170    -0.98   0.353       -0.551       0.218
      _Iid_2 |      0.418      1.027     0.41   0.694       -1.906       2.741
      _Iid_3 |     -2.590      1.939    -1.34   0.214       -6.976       1.796
      _Iid_4 |     -0.964      2.328    -0.41   0.688       -6.229       4.301
    _Iyear_2 |     -0.542      0.924    -0.59   0.572       -2.631       1.548
    _Iyear_3 |     -0.479      0.992    -0.48   0.641       -2.722       1.765
    _Iyear_4 |     -0.397      1.096    -0.36   0.726       -2.877       2.084
    _Iyear_5 |     -0.445      1.099    -0.40   0.695       -2.931       2.041
    _Iyear_6 |      1.651      1.311     1.26   0.239       -1.313       4.616
       _cons |      3.839      2.533     1.52   0.164       -1.891       9.569
------------------------------------------------------------------------------

Sobel-Goodman Mediation Tests

                     Coef         Std Err     Z           P>|Z|
Sobel               -.0631524    .13961254  -.4523      .65102373
Goodman-1 (Aroian)  -.0631524    .19122088  -.3303      .74120433
Goodman-2           -.0631524    .04917211  -1.284      .19903234

                    Coef      Std Err    Z          P>|Z|
a coefficient   =  .307133   .328431    .93515    .349711
b coefficient   = -.205619    .39785  -.516825    .605278
Indirect effect = -.063152   .139613   -.45234    .651024
  Direct effect =  .958806   .430893   2.22516     .02607
   Total effect =  .895654   .397774   2.25166    .024344

Proportion of total effect that is mediated:  -.07050982
Ratio of indirect to direct effect:           -.06586565
Ratio of total to direct effect:              .93413435

tab id,gen(dum_id)

         id |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |          5       22.73       22.73
          2 |          5       22.73       45.45
          3 |          6       27.27       72.73
          4 |          6       27.27      100.00
------------+-----------------------------------
      Total |         22      100.00

. tab year,gen(dum_year)

       year |      Freq.     Percent        Cum.
------------+-----------------------------------
          1 |          4       18.18       18.18
          2 |          4       18.18       36.36
          3 |          4       18.18       54.55
          4 |          4       18.18       72.73
          5 |          4       18.18       90.91
          6 |          2        9.09      100.00
------------+-----------------------------------
      Total |         22      100.00

. bootstrap r(ind_eff) r(dir_eff), reps(500) : sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*)
(running sgmediation on estimation sample)

Bootstrap replications (500)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
xxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxx.x.xx    50
xxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxx   100
xxxxxxxxx.xxxxxxxxxx.xx.xxxxxxxxx.xxx.xx.xxxxxx.xx   150
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   200
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxxxxxx.   250
xxxxxx.xxxxxxx.xx..xxxxxxxx.xxxxxxxxxx..xxxxxxxxxx   300
xxxxxxxxxxxxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   350
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx   400
.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.xxxxx   450
xxxxxxxxxx.xxxxxxxxxxxxxxxxxxx.xxxxxxxxxxxx.x.x..x   500

Bootstrap results                               Number of obs     =         21
                                                Replications      =         30

      command:  sgmediation y, mv(x2) iv(x1) cv(x3 dum_id* dum_year*)
        _bs_1:  r(ind_eff)
        _bs_2:  r(dir_eff)

------------------------------------------------------------------------------
             |   Observed   Bootstrap                         Normal-based
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _bs_1 |     -0.063      0.641    -0.10   0.921       -1.319       1.192
       _bs_2 |      0.959      0.911     1.05   0.293       -0.828       2.745
------------------------------------------------------------------------------
Note: One or more parameters could not be estimated in 470 bootstrap
      replicates; standard-error estimates include only complete replications.
This is just a very simple example. The data I input at will.Do you think the codes is right or wrong?I just put individual fixed effects and time fixed effects in cv( ).But in the bootstrap,there are many "xxxxxxxxxxxx......".I don't know why.


Best
Raymond