Dear Stata Users,
I have individual defendants data nested within courts and four possible outcomes of the trial. If I split outcome variable in series of dummies I might run the following model e.g. for "fine" as one of four possible outcomes:
melogit fine male age || courtName: , nolog
this is equivalent to:
gsem (fine <- male age M1[courtName]@1) , mlogit
I understand it is irrelevant whether I constrain this term "M1[courtName]" or not, as Stata by default constrain this to unity. My first question is: Why Stata treat simple id variable as a latent one (and whats more as continuous one)? Is this a correct way to indicate nested data?
Next, if I want fit multinomial logit I would go as follows:
mlogit fine male age || courtName: , nolog // However, it is not allowed to fit multilevel model using 'mlogit' (as far as I know).
Hence (and this is my second question), what would be equivalent to the above model in 'gsem'?
this one: gsem (i.outcome <- male age M1[courtName] ) , mlogit
or this one: gsem (i.outcome <- male age M1[courtName]@1) , mlogit
?
Again Stata treats courtName as continuous latent variable, which I don't want. Is it another way to do this?
. gsem (i.outcome <- male age M1[courtName] ) , mlogit
------------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
1.outcome | (base outcome)
-------------------+----------------------------------------------------------------
2.outcome |
male | .1250307 .1543864 0.81 0.418 -.1775611 .4276226
age | .0429915 .0066398 6.47 0.000 .0299776 .0560053
|
M1[courtName] | 1 (constrained)
|
_cons | -.4005779 .313917 -1.28 0.202 -1.015844 .214688
-------------------+----------------------------------------------------------------
3.outcome |
male | .4524784 .1867836 2.42 0.015 .0863893 .8185676
age | .0085883 .0081239 1.06 0.290 -.0073342 .0245108
|
M1[courtName] | .3650166 .1427674 2.56 0.011 .0851977 .6448356
|
_cons | -.505497 .2930937 -1.72 0.085 -1.07995 .0689562
-------------------+----------------------------------------------------------------
4.outcome |
male | -1.291661 .1676671 -7.70 0.000 -1.620282 -.9630392
age | .0444199 .0068133 6.52 0.000 .031066 .0577738
|
M1[courtName] | -.8234215 .2766382 -2.98 0.003 -1.365622 -.2812205
|
_cons | -.3104242 .294192 -1.06 0.291 -.8870298 .2661814
-------------------+----------------------------------------------------------------
var(M1[courtName])| .604349 .2992112 .2290133 1.594832
------------------------------------------------------------------------------------
. gsem (i.outcome <- male age M1[courtName]@1) , mlogit
------------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
1.outcome | (base outcome)
-------------------+----------------------------------------------------------------
2.outcome |
male | -.1060475 .1562931 -0.68 0.497 -.4123764 .2002814
age | .0393629 .0069448 5.67 0.000 .0257514 .0529744
|
M1[courtName] | 1 (constrained)
|
_cons | .2826794 .3198872 0.88 0.377 -.344288 .9096468
-------------------+----------------------------------------------------------------
3.outcome |
male | .3440249 .1903876 1.81 0.071 -.029128 .7171778
age | .0072179 .0084539 0.85 0.393 -.0093514 .0237872
|
M1[courtName] | 1 (constrained)
|
_cons | -.0462166 .3600873 -0.13 0.898 -.7519747 .6595415
-------------------+----------------------------------------------------------------
4.outcome |
male | -1.184414 .1675455 -7.07 0.000 -1.512797 -.8560307
age | .0469526 .0071332 6.58 0.000 .0329719 .0609333
|
M1[courtName] | 1 (constrained)
|
_cons | .1697173 .3247067 0.52 0.601 -.4666962 .8061308
-------------------+----------------------------------------------------------------
var(M1[courtName])| .5576233 .2498166 .2317398 1.34178
------------------------------------------------------------------------------------
Related Posts with Multilevel multinomial logistic regression in gsem
integrated time dependent area under the curveHello Is there any command in stata to calculate the integrated time dependent area under the curve…
ml command with estimated coefficients (rangestat/runby?)Dear All, Given the data set Code: * Example generated by -dataex-. To install: ssc install dataex…
A package for Nearest Neighbor estimation with panel data?Hello. I'm trying to estimate an effect using panel data with three time periods (0, 1 and 2). Time …
Converting incident data to weekly ratesHi, I've got a data handling challenge that I was hoping to get some assistance with. The data I'm …
Add leading zero before decimal in scalarsDear All, I am writing to ask a quick question on making a small adjustment to scalars. Code: sy…
Subscribe to:
Post Comments (Atom)
0 Response to Multilevel multinomial logistic regression in gsem
Post a Comment