I would like to maximize the Sharpe ratio (=Historical Return (portfolio)/Standard deviation(portfolio return) ). I have been trying to use "ssc install mvport" but it requires to set minimum returns whereas there is only one unique solution to these type of problems. Is there a way to go around this with mvport or another way in Stata?
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double(t ret_portfolio ret_VXX) 96 .6553403830264137 -.026055776892430247 97 .615942433885238 .14349995909351226 98 .6549980760630792 -.040995921871646406 99 .611331259457566 .053640704267382856 100 .6516463810889485 .018197266869645415 101 .644861822841235 -.05813630041724627 102 .6516117762023534 .022150029533372712 103 .6254649519493242 0 104 .6443330677719585 0 105 .66776014102663 -.041823172493498935 106 .6782191499082576 -.04967960799095366 107 .6800066130394212 -.05481516738061238 108 .6623282484514186 -.021233738984473362 109 .638411098072581 .033013205282112795 110 .6873603538582862 -.025566531086577558 111 .6578176494999823 -.00851861316977596 112 .6488450182532621 -.015379328120972646 113 .6643661380843244 -.01666666666666664 114 .6528852243747404 -.005146863075694368 115 .644730548167746 .020872357506020903 116 .6564061832675793 .00218435998252512 117 .6620415941587723 .009328683522231849 118 .6735547117009687 -.025913449080072558 119 .7011827258446057 -.009133634831958864 120 .6463984892326546 .002595310542330466 121 .6460057122087697 .032759082388645916 122 .6473336031088274 .01875540190146933 123 .6810530602788413 -.023415627386103376 124 .6714916375972614 -.01207540613326384 125 .6837540612757514 -.010288427717200156 126 .6663051111530061 -.01759218125277658 127 .6672716321369859 -.028940942389436456 128 .662799254149418 -.024215330166713313 129 .6567089407077172 -.018516750978333472 130 .6530305606897248 .017796362929106274 131 .6271134933172295 .050066883240970854 132 .6316877704734297 .05814376706096452 133 .6385512015566848 -.05047725513801706 134 .5934496817049018 .06239811628328202 135 .6328575631817959 -.05464154803512059 136 .6297901572916506 -.02452660054102794 137 .6363967972137055 -.0207062303568128 138 .6489518937634264 .02010572021899184 139 .6454115594414876 -.0173035995188303 140 .6287686059385796 .002730696798493334 141 .6552305975801749 -.005822142924218146 142 .6636901006777652 .0014168319637290212 143 .6435402777615122 .0010375400867760746 144 .664266026253659 -.009705078677094142 145 .6291283821152882 .02997145575642251 146 .6424204523665015 .006096997690531146 147 .6407467983780517 0 148 .6242077156926915 -.013772839959599669 149 .6084393371732796 .006144679266362504 150 .6135215705386448 .030535763856759615 151 .6181735391647832 .014815479931758925 152 .628523638184595 -.02689789417802152 153 .6389701304974386 -.02936897617748685 154 .6246221280103584 -.013021077283372371 155 .6405162508574946 -.02723993925588463 156 .6195841798285232 -.021075226851400106 157 .6010876639076472 .03109737865045355 158 .6467047454641123 -.005316578057032355 159 .632989122680923 -.03459669582118564 160 .6591459900556108 -.016206965975437884 161 .6344433934888756 -.002865036324567698 162 .6373608050817517 .004002052334530534 163 .6348437564412239 .009300899427636924 164 .6313039889035046 .003037974683544275 165 .6451635402154641 -.00969207470974249 166 .6320392877516561 -.0014272606789683003 167 .6348730768577456 -.011230219499744854 168 .6322820565282328 0 169 .6344422121074473 -.0076406814661847695 170 .5921646213488992 .061075850587868116 171 .5995224226215796 .015885467738772214 172 .6159195300382249 .014092664092664171 173 .6271556618370869 .015419760137064578 174 .5245029563050037 .16741657292838394 175 .5656339671818992 .08575558053637379 176 .6561462884539186 -.07572844253808604 177 .5876126212199566 .005920947351576211 178 .6739983882018561 -.06395163856188349 179 .6191174014319663 .011896668932698772 180 .5716538278172333 .07356399059455833 181 .61134307579603 -.016583229036295406 182 .6187314341802082 .008988227807826881 183 .5943708116792095 .03791880173433191 184 .5052477499397975 .07716846422603674 185 .6558237743612695 -.020730503455083895 186 .549002066497686 .0563076036866359 187 .5506910460582927 .008725289706884807 188 .6185435473864563 -.03791052844979041 189 .6349038978514235 -.03167802205520819 190 .6394464247675926 -.03220658639199206 191 .5886391743450335 .007944835856693167 192 .6218321084109512 -.009518143961927433 193 .6426069824082752 -.033858858858858795 194 .7019721200933644 -.06931385500038854 195 .6317173798388191 -.004592134925273417 end
0 Response to Maximizing Sharpe Ratio - Portfolio optimization
Post a Comment