I have conducted a systems-GMM analysis aiming to determine whether a relationship exists between GDP per capita growth (agr) and income inequality (ginid), and I'm now looking to test whether this effect differs for low-income and high-income countries.
To do this, I have first conducted separate regressions for both high-income and low-income countries using the following codes:
High-Income:
Code:
xtabond2 agr gdpL1 ginid schl invrt pli if avggdpL1 > 9.594971, gmmstyle(gdpL1 ginid schl invrt pli, lag(2 2) eq(level) collapse) gmmstyle(gdpL1 ginid schl invrt pli, lag(3 3)eq(diff) collapse) twostep robust small
Code:
xtabond2 agr gdpL1 ginid schl invrt pli if avggdpL1 < 6.849174, gmmstyle(gdpL1 ginid schl invrt pli, lag(2 2) eq(level) collapse) gmmstyle(gdpL1 ginid schl invrt pli, lag(3 3)eq(diff) collapse) twostep robust small
High-Income:
Code:
Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: cid Number of obs = 147 Time variable : period Number of groups = 26 Number of instruments = 11 Obs per group: min = 2 F(5, 25) = 5.08 avg = 5.65 Prob > F = 0.002 max = 6 ------------------------------------------------------------------------------ | Corrected agr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- gdpL1 | -74.23678 105.4379 -0.70 0.488 -291.3903 142.9167 ginid | 2.42002 7.60249 0.32 0.753 -13.2376 18.07764 schl | 48.99133 24.56882 1.99 0.057 -1.609101 99.59177 invrt | 2.935979 8.312672 0.35 0.727 -14.18429 20.05625 pli | -.9992304 .9320143 -1.07 0.294 -2.91875 .9202891 _cons | 519.9719 919.0785 0.57 0.577 -1372.906 2412.85 ------------------------------------------------------------------------------
Code:
Dynamic panel-data estimation, two-step system GMM ------------------------------------------------------------------------------ Group variable: cid Number of obs = 149 Time variable : period Number of groups = 34 Number of instruments = 11 Obs per group: min = 2 F(5, 33) = 13.96 avg = 4.38 Prob > F = 0.000 max = 6 ------------------------------------------------------------------------------ | Corrected agr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- gdpL1 | 6.896571 17.06682 0.40 0.689 -27.82614 41.61929 ginid | .0412858 3.93958 0.01 0.992 -7.97385 8.056422 schl | 10.49205 4.164243 2.52 0.017 2.019832 18.96426 invrt | -.1814473 1.65804 -0.11 0.914 -3.554754 3.19186 pli | -1.22711 .279851 -4.38 0.000 -1.796471 -.6577486 _cons | 23.14023 129.7007 0.18 0.859 -240.7379 287.0184 ------------------------------------------------------------------------------
The first step I took was to store the results for the two-regressions and then use the "suest" command to test for coefficient equality, but this yielded the following error:
Code:
suest high low high was estimated with a nonstandard vce (Corrected) r(322);
Code:
suest low high unable to generate scores for model low suest requires that predict allow the score option r(322);
Many thanks in advance!
0 Response to Testing for Equality of Coefficients with Dynamic Panel Data
Post a Comment