I have estimated a dynamic linear panel regression with new command "xtdpdgmm" following the slides provided by
PHP Code:
Sebastian Kripfganz
* asymptotically invalid if the one-step weighting matrix is not optimal
Code:
xtdpdgmm L(0/1).Y X1 X2, model(fodev) gmm(X1 X2, lag(0 2)) vce(r)
Code:
Generalized method of moments estimation
Fitting full model:
Step 1 f(b) = .00862567
Group variable: id Number of obs = 3877
Time variable: year Number of groups = 138
Moment conditions: linear = 277 Obs per group: min = 1
nonlinear = 0 avg = 28.0942
total = 277 max = 47
(Std. Err. adjusted for 138 clusters in id)
------------------------------------------------------------------------------
| Robust
Y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Y |
L1. | .2349892 .055445 4.24 0.000 .1263189 .3436594
|
X1| .0199681 .0091513 2.18 0.029 .002032 .0379043
X2| -.0052541 .0016753 -3.14 0.002 -.0085377 -.0019705
_cons | .0029555 .0078291 0.38 0.706 -.0123893 .0183003
------------------------------------------------------------------------------
Instruments corresponding to the linear moment conditions:
1, omitted for space
2, model(level):
_cons
. estat serial, ar(1/3)
Arellano-Bond test for autocorrelation of the first-differenced residuals
H0: no autocorrelation of order 1: z = -1.8644 Prob > |z| = 0.0623
H0: no autocorrelation of order 2: z = 0.6648 Prob > |z| = 0.5062
H0: no autocorrelation of order 3: z = 2.2343 Prob > |z| = 0.0255
. estat overid
Sargan-Hansen test of the overidentifying restrictions
H0: overidentifying restrictions are valid
1-step moment functions, 1-step weighting matrix chi2(273) = 616.0026
note: * Prob > chi2 = 0.0000
1-step moment functions, 2-step weighting matrix chi2(273) = 130.9023
note: * Prob > chi2 = 1.0000
* asymptotically invalid if the one-step weighting matrix is not optimal
0 Response to Estimations with XTDPDGMM command
Post a Comment