Hi all,

My initial pooled OLS estimation yields results with statistically significant coefficients.

I ran a correlation matrix which assigns a value of 0.4 to my explanatory variables, education and income. This indicates a moderate, positive relationship and so I decided to include an interaction term (education*income) in my regression as follows:

Code:
reg cashshare age c.incometh##i.educat male credit cheque rating holdings i.year if sample==1, robust
Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float(newID year cashshare) double age float(incometh educat male) double(credit cheque) float rating double holdings float sample
 1 2015   .1334569 31 112.5 4 1 1 1 20 108.33333333333341 1
 1 2016   .3030303 32 112.5 4 1 1 1 21                 20 1
 1 2017   .1935484 34 112.5 4 1 1 1 24  969.6428580000008 1
 2 2015  .12854996 66  27.5 4 0 1 1 21  300.0000000000001 1
 2 2016   .1992903 67  17.5 4 0 1 1 22 180.00000000000006 1
 2 2017   .1682243 68  17.5 4 0 1 1 23                280 1
 3 2016 .020833334 41 112.5 3 1 1 1 29                  0 1
 3 2017          1 42 112.5 3 1 1 1 25                 80 1
 4 2015  .05921588 25  32.5 2 1 0 1 25               82.5 1
 4 2016          0 26  37.5 2 1 0 1 26 11.666666666666664 1
 4 2017          0 27  37.5 2 1 1 1 24  973.9285715999991 1
 5 2015   .3259842 53  37.5 3 0 1 1 21 130.44642870000004 1
 5 2016  .20155144 55  32.5 3 0 1 1 23  80.00000000000001 1
 5 2017   .4016003 56  22.5 3 0 1 1 22  60.00000000000001 1
 6 2015  .06490872 26    55 4 0 1 1 20                 80 1
 6 2016     .09375 28    55 4 0 1 1 20                 20 1
 7 2015  .05271691 83 112.5 3 1 1 1 22 1304.4642869999998 1
 7 2016  .05449017 84 112.5 3 1 1 1 18                600 1
 7 2017  .24793923 85 112.5 3 1 1 0 20                300 1
 8 2015          0 38 112.5 3 1 1 1 14  83.33333333333327 1
 8 2016  .13636364 40 162.5 3 1 1 1 17  85.73735572900041 1
 8 2017          0 41 162.5 3 1 1 1 15 199.99999999999994 1
 9 2015  .53912795 57  22.5 2 0 1 1 29                 80 1
 9 2016  .12972517 58  22.5 2 0 1 1 28 200.00000000000014 1
 9 2017  .54251766 59  22.5 2 0 1 1 29 13.333333333333336 1
10 2015 .023809524 57 162.5 4 1 1 1 22  869.6428579999998 1
10 2016  .29116118 58    55 4 1 1 1 23  710.3417382269064 1
10 2017  .13953489 59    45 4 1 1 1 21  869.6428579999998 1
11 2015  .52614975 44  87.5 3 1 1 1 23 434.82142900000036 1
11 2016   .7837778 46  87.5 3 1 1 1 23 434.82142900000036 1
11 2017   .8249276 47  87.5 3 1 1 1 23 500.00000000000045 1
12 2015  .12204076 54 162.5 3 1 1 1 21  150.0000000000001 1
12 2016          0 56 162.5 3 1 1 1 22                 40 1
12 2017   .0961064 57 162.5 3 1 1 1 24  60.00000000000001 1
13 2015  .06973366 64  17.5 3 0 1 1 16 100.00000000000007 1
13 2016   .1854961 66  17.5 3 0 1 1 22   708.333333333333 1
13 2017   .0924408 67 11.25 3 0 1 1 19                300 1
14 2015  .50914204 48  6.25 3 0 0 0 24        2174.107145 1
14 2016   .3966907 49  8.75 3 0 0 0 30 1779.2857159999999 1
14 2017   .8424754 50  8.75 3 0 0 1 24  521.7857148000004 1
15 2015  .24536224 54 112.5 3 0 1 1 24  257.4107145000001 1
15 2017          . 57 112.5 3 0 1 1 16                  . 0
16 2015  .05657994 56 162.5 3 1 1 1 19 200.00000000000014 1
16 2016   .2283169 58 162.5 3 1 1 1 22 100.00000000000006 1
16 2017  .14577565 58 162.5 3 1 1 1 20 100.00000000000007 1
17 2015   .2158688 53  67.5 2 1 1 1 25 373.92857160000017 1
17 2016  .53102005 55  67.5 2 1 0 1 19 240.00000000000014 1
18 2015  .03986711 47 162.5 3 0 1 1 19  33.33333333333334 1
18 2017   .0815647 50 162.5 3 0 1 1 14 100.00000000000007 1
19 2015  .06666667 49  67.5 4 1 1 1 21 23.333333333333336 1
19 2016  .03590127 51  67.5 4 1 1 1 19                 40 1
19 2017  .07803112 52  67.5 4 1 1 1 26                 80 1
20 2015   .1700716 62  87.5 2 1 1 1 24  280.8928574000001 1
20 2016  .17845364 64 112.5 2 1 1 1 24 180.00000000000006 1
20 2017  .28082514 64 112.5 2 1 1 1 23 146.96428580000003 1
21 2015  .20849185 64  8.75 3 0 1 1 16 173.92857160000003 1
21 2016  .46384865 65  8.75 3 0 1 1 23  95.29761913333337 1
21 2017   .3653846 66  8.75 3 0 1 1 17                120 1
22 2016   .6631991 50  32.5 2 1 1 1 25  782.6785722000002 1
22 2017   .6666667 51  32.5 2 1 1 1 22  360.0000000000001 1
23 2015  .04206984 46 162.5 4 1 1 1 19                 20 1
23 2017          0 49 162.5 4 1 1 1 20                 80 1
24 2015   .1640541 44  87.5 3 1 1 1 20               1600 1
24 2016   .3001541 45 112.5 3 1 1 1 20 120.00000000000001 1
24 2017        .25 46 112.5 3 1 1 1 16 100.00000000000007 1
25 2015        .12 28   2.5 4 0 1 1 16                260 1
25 2016          0 29  17.5 4 0 1 1 21                 80 1
25 2017 .069695085 30  27.5 4 0 1 1 17 46.666666666666664 1
26 2015        .18 30    45 4 0 1 1 17 100.00000000000007 1
26 2016  .06896552 32    45 4 0 1 1 25                 60 1
26 2017  .14180991 32    45 4 0 1 1 23 100.00000000000007 1
27 2015  .23148148 52  67.5 4 1 1 1 20 200.00000000000014 1
27 2016   .2897196 52  67.5 4 1 1 1 21  360.0000000000003 1
27 2017  .20763187 53  67.5 4 1 1 1 19  340.0000000000003 1
28 2015  .09425198 46 162.5 3 1 1 1 17  554.8214290000002 1
28 2016  .06666667 47 112.5 3 1 1 1 22 180.00000000000006 1
28 2017   .4494983 48 112.5 3 1 1 1 24 120.00000000000001 1
29 2015          0 31  67.5 3 1 1 1 20                 20 1
29 2016  .12244898 33  67.5 3 1 1 1 22                160 1
29 2017       .125 34  67.5 3 1 1 1 20                 40 1
30 2015   .3865514 56  67.5 2 1 0 1 29 3892.8854616688204 1
30 2016  .25685653 58  67.5 2 1 0 1 19 126.96428580000003 1
30 2017         .2 59  87.5 2 1 0 1 19 213.92857160000003 1
31 2015   .3388633 58  32.5 2 1 0 1 25 195.66964305000005 1
31 2016   .4044944 60  32.5 2 1 0 1 22 200.00000000000014 1
31 2017   .4013378 61  32.5 2 1 0 1 22 200.00000000000003 1
32 2015   .1178344 30 112.5 3 1 1 1 21  33.33333333333334 1
32 2016 .012800976 32 112.5 3 1 1 1 21 25.000000000000018 1
32 2017  .01222494 33 112.5 3 1 1 1 22   41.6666666666667 1
33 2015    .522196 59  67.5 2 1 0 1 15 1739.2857159999999 1
33 2016  .52024233 61  67.5 2 1 0 1 23  521.7857148000002 1
34 2015          . 69  8.75 1 1 . .  .                  . 0
34 2016          1 69  8.75 1 1 0 0 12 130.44642870000007 1
34 2017          1 71  8.75 1 1 0 1 17 173.92857160000003 1
35 2015          0 53  87.5 3 1 1 1 25  53.33333333333333 1
35 2016   .1923077 54  67.5 3 1 0 1 21                 20 1
35 2017  .06060606 55  87.5 3 1 0 1 26  33.33333333333333 1
36 2015   .4244186 37 13.75 3 0 0 1 23 180.00000000000003 1
36 2016  .17261343 39  8.75 3 0 0 1 23 213.92857160000003 1
36 2017  .15873533 40 11.25 3 0 0 1 21 173.92857160000003 1
end
label values newID newID
label def newID 1 "140100007", modify
label def newID 2 "140100010", modify
label def newID 3 "140100035", modify
label def newID 4 "140100038", modify
label def newID 5 "140100047", modify
label def newID 6 "140100048", modify
label def newID 7 "140100055", modify
label def newID 8 "140100072", modify
label def newID 9 "140100081", modify
label def newID 10 "140100108", modify
label def newID 11 "140100116", modify
label def newID 12 "140100125", modify
label def newID 13 "140100143", modify
label def newID 14 "140100144", modify
label def newID 15 "140100160", modify
label def newID 16 "140100168", modify
label def newID 17 "140100175", modify
label def newID 18 "140100179", modify
label def newID 19 "140100183", modify
label def newID 20 "140100236", modify
label def newID 21 "140100244", modify
label def newID 22 "140100288", modify
label def newID 23 "140100295", modify
label def newID 24 "140100299", modify
label def newID 25 "140100300", modify
label def newID 26 "140100307", modify
label def newID 27 "140100310", modify
label def newID 28 "140100317", modify
label def newID 29 "140100324", modify
label def newID 30 "140100329", modify
label def newID 31 "140100333", modify
label def newID 32 "140100335", modify
label def newID 33 "140100341", modify
label def newID 34 "140100346", modify
label def newID 35 "140100378", modify
label def newID 36 "140100414", modify
label values educat educat_label
label def educat_label 1 "no diploma", modify
label def educat_label 2 "high school", modify
label def educat_label 3 "graduate", modify
label def educat_label 4 "post graduate", modify
label values male male_label
label def male_label 0 "female", modify
label def male_label 1 "male", modify
label values credit credit_label
label def credit_label 0 "no credit card", modify
label def credit_label 1 "credit card owner", modify
lab var cashshare "cash share of total trasanactions in a typical month"
lab var age "age"
lab var incometh "income measured in thousands of dollars"
lab var educat "highlest level of education"
lab var male "is a male"
lab var credit "owns credit card"
lab var cheque "owns checking account"
lab var rating "total rating of cash out of 30"
lab var holdings "total cash held in a typical month”
When I ran the OLS estimation with the interaction term included, the coefficient on income became insignificant and the coefficient on the interaction term was insignificant too.

(1) I would like to understand the reasoning for this and any ideas would be really helpful. Also, I am thinking of removing the interaction term from my model because beforehand all coefficients were significant but I am still unsure about this.

(2) I would also like to understand more about the relationship between education and income through margins and marginsplot but I am unsure of the correct code. I began with the following code which gave me error message “only factor variables and their interactions are allowed r(198);”

Code:
margins incometh educat
Many thanks in advance.