My initial pooled OLS estimation yields results with statistically significant coefficients.
I ran a correlation matrix which assigns a value of 0.4 to my explanatory variables, education and income. This indicates a moderate, positive relationship and so I decided to include an interaction term (education*income) in my regression as follows:
Code:
reg cashshare age c.incometh##i.educat male credit cheque rating holdings i.year if sample==1, robust
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(newID year cashshare) double age float(incometh educat male) double(credit cheque) float rating double holdings float sample 1 2015 .1334569 31 112.5 4 1 1 1 20 108.33333333333341 1 1 2016 .3030303 32 112.5 4 1 1 1 21 20 1 1 2017 .1935484 34 112.5 4 1 1 1 24 969.6428580000008 1 2 2015 .12854996 66 27.5 4 0 1 1 21 300.0000000000001 1 2 2016 .1992903 67 17.5 4 0 1 1 22 180.00000000000006 1 2 2017 .1682243 68 17.5 4 0 1 1 23 280 1 3 2016 .020833334 41 112.5 3 1 1 1 29 0 1 3 2017 1 42 112.5 3 1 1 1 25 80 1 4 2015 .05921588 25 32.5 2 1 0 1 25 82.5 1 4 2016 0 26 37.5 2 1 0 1 26 11.666666666666664 1 4 2017 0 27 37.5 2 1 1 1 24 973.9285715999991 1 5 2015 .3259842 53 37.5 3 0 1 1 21 130.44642870000004 1 5 2016 .20155144 55 32.5 3 0 1 1 23 80.00000000000001 1 5 2017 .4016003 56 22.5 3 0 1 1 22 60.00000000000001 1 6 2015 .06490872 26 55 4 0 1 1 20 80 1 6 2016 .09375 28 55 4 0 1 1 20 20 1 7 2015 .05271691 83 112.5 3 1 1 1 22 1304.4642869999998 1 7 2016 .05449017 84 112.5 3 1 1 1 18 600 1 7 2017 .24793923 85 112.5 3 1 1 0 20 300 1 8 2015 0 38 112.5 3 1 1 1 14 83.33333333333327 1 8 2016 .13636364 40 162.5 3 1 1 1 17 85.73735572900041 1 8 2017 0 41 162.5 3 1 1 1 15 199.99999999999994 1 9 2015 .53912795 57 22.5 2 0 1 1 29 80 1 9 2016 .12972517 58 22.5 2 0 1 1 28 200.00000000000014 1 9 2017 .54251766 59 22.5 2 0 1 1 29 13.333333333333336 1 10 2015 .023809524 57 162.5 4 1 1 1 22 869.6428579999998 1 10 2016 .29116118 58 55 4 1 1 1 23 710.3417382269064 1 10 2017 .13953489 59 45 4 1 1 1 21 869.6428579999998 1 11 2015 .52614975 44 87.5 3 1 1 1 23 434.82142900000036 1 11 2016 .7837778 46 87.5 3 1 1 1 23 434.82142900000036 1 11 2017 .8249276 47 87.5 3 1 1 1 23 500.00000000000045 1 12 2015 .12204076 54 162.5 3 1 1 1 21 150.0000000000001 1 12 2016 0 56 162.5 3 1 1 1 22 40 1 12 2017 .0961064 57 162.5 3 1 1 1 24 60.00000000000001 1 13 2015 .06973366 64 17.5 3 0 1 1 16 100.00000000000007 1 13 2016 .1854961 66 17.5 3 0 1 1 22 708.333333333333 1 13 2017 .0924408 67 11.25 3 0 1 1 19 300 1 14 2015 .50914204 48 6.25 3 0 0 0 24 2174.107145 1 14 2016 .3966907 49 8.75 3 0 0 0 30 1779.2857159999999 1 14 2017 .8424754 50 8.75 3 0 0 1 24 521.7857148000004 1 15 2015 .24536224 54 112.5 3 0 1 1 24 257.4107145000001 1 15 2017 . 57 112.5 3 0 1 1 16 . 0 16 2015 .05657994 56 162.5 3 1 1 1 19 200.00000000000014 1 16 2016 .2283169 58 162.5 3 1 1 1 22 100.00000000000006 1 16 2017 .14577565 58 162.5 3 1 1 1 20 100.00000000000007 1 17 2015 .2158688 53 67.5 2 1 1 1 25 373.92857160000017 1 17 2016 .53102005 55 67.5 2 1 0 1 19 240.00000000000014 1 18 2015 .03986711 47 162.5 3 0 1 1 19 33.33333333333334 1 18 2017 .0815647 50 162.5 3 0 1 1 14 100.00000000000007 1 19 2015 .06666667 49 67.5 4 1 1 1 21 23.333333333333336 1 19 2016 .03590127 51 67.5 4 1 1 1 19 40 1 19 2017 .07803112 52 67.5 4 1 1 1 26 80 1 20 2015 .1700716 62 87.5 2 1 1 1 24 280.8928574000001 1 20 2016 .17845364 64 112.5 2 1 1 1 24 180.00000000000006 1 20 2017 .28082514 64 112.5 2 1 1 1 23 146.96428580000003 1 21 2015 .20849185 64 8.75 3 0 1 1 16 173.92857160000003 1 21 2016 .46384865 65 8.75 3 0 1 1 23 95.29761913333337 1 21 2017 .3653846 66 8.75 3 0 1 1 17 120 1 22 2016 .6631991 50 32.5 2 1 1 1 25 782.6785722000002 1 22 2017 .6666667 51 32.5 2 1 1 1 22 360.0000000000001 1 23 2015 .04206984 46 162.5 4 1 1 1 19 20 1 23 2017 0 49 162.5 4 1 1 1 20 80 1 24 2015 .1640541 44 87.5 3 1 1 1 20 1600 1 24 2016 .3001541 45 112.5 3 1 1 1 20 120.00000000000001 1 24 2017 .25 46 112.5 3 1 1 1 16 100.00000000000007 1 25 2015 .12 28 2.5 4 0 1 1 16 260 1 25 2016 0 29 17.5 4 0 1 1 21 80 1 25 2017 .069695085 30 27.5 4 0 1 1 17 46.666666666666664 1 26 2015 .18 30 45 4 0 1 1 17 100.00000000000007 1 26 2016 .06896552 32 45 4 0 1 1 25 60 1 26 2017 .14180991 32 45 4 0 1 1 23 100.00000000000007 1 27 2015 .23148148 52 67.5 4 1 1 1 20 200.00000000000014 1 27 2016 .2897196 52 67.5 4 1 1 1 21 360.0000000000003 1 27 2017 .20763187 53 67.5 4 1 1 1 19 340.0000000000003 1 28 2015 .09425198 46 162.5 3 1 1 1 17 554.8214290000002 1 28 2016 .06666667 47 112.5 3 1 1 1 22 180.00000000000006 1 28 2017 .4494983 48 112.5 3 1 1 1 24 120.00000000000001 1 29 2015 0 31 67.5 3 1 1 1 20 20 1 29 2016 .12244898 33 67.5 3 1 1 1 22 160 1 29 2017 .125 34 67.5 3 1 1 1 20 40 1 30 2015 .3865514 56 67.5 2 1 0 1 29 3892.8854616688204 1 30 2016 .25685653 58 67.5 2 1 0 1 19 126.96428580000003 1 30 2017 .2 59 87.5 2 1 0 1 19 213.92857160000003 1 31 2015 .3388633 58 32.5 2 1 0 1 25 195.66964305000005 1 31 2016 .4044944 60 32.5 2 1 0 1 22 200.00000000000014 1 31 2017 .4013378 61 32.5 2 1 0 1 22 200.00000000000003 1 32 2015 .1178344 30 112.5 3 1 1 1 21 33.33333333333334 1 32 2016 .012800976 32 112.5 3 1 1 1 21 25.000000000000018 1 32 2017 .01222494 33 112.5 3 1 1 1 22 41.6666666666667 1 33 2015 .522196 59 67.5 2 1 0 1 15 1739.2857159999999 1 33 2016 .52024233 61 67.5 2 1 0 1 23 521.7857148000002 1 34 2015 . 69 8.75 1 1 . . . . 0 34 2016 1 69 8.75 1 1 0 0 12 130.44642870000007 1 34 2017 1 71 8.75 1 1 0 1 17 173.92857160000003 1 35 2015 0 53 87.5 3 1 1 1 25 53.33333333333333 1 35 2016 .1923077 54 67.5 3 1 0 1 21 20 1 35 2017 .06060606 55 87.5 3 1 0 1 26 33.33333333333333 1 36 2015 .4244186 37 13.75 3 0 0 1 23 180.00000000000003 1 36 2016 .17261343 39 8.75 3 0 0 1 23 213.92857160000003 1 36 2017 .15873533 40 11.25 3 0 0 1 21 173.92857160000003 1 end label values newID newID label def newID 1 "140100007", modify label def newID 2 "140100010", modify label def newID 3 "140100035", modify label def newID 4 "140100038", modify label def newID 5 "140100047", modify label def newID 6 "140100048", modify label def newID 7 "140100055", modify label def newID 8 "140100072", modify label def newID 9 "140100081", modify label def newID 10 "140100108", modify label def newID 11 "140100116", modify label def newID 12 "140100125", modify label def newID 13 "140100143", modify label def newID 14 "140100144", modify label def newID 15 "140100160", modify label def newID 16 "140100168", modify label def newID 17 "140100175", modify label def newID 18 "140100179", modify label def newID 19 "140100183", modify label def newID 20 "140100236", modify label def newID 21 "140100244", modify label def newID 22 "140100288", modify label def newID 23 "140100295", modify label def newID 24 "140100299", modify label def newID 25 "140100300", modify label def newID 26 "140100307", modify label def newID 27 "140100310", modify label def newID 28 "140100317", modify label def newID 29 "140100324", modify label def newID 30 "140100329", modify label def newID 31 "140100333", modify label def newID 32 "140100335", modify label def newID 33 "140100341", modify label def newID 34 "140100346", modify label def newID 35 "140100378", modify label def newID 36 "140100414", modify label values educat educat_label label def educat_label 1 "no diploma", modify label def educat_label 2 "high school", modify label def educat_label 3 "graduate", modify label def educat_label 4 "post graduate", modify label values male male_label label def male_label 0 "female", modify label def male_label 1 "male", modify label values credit credit_label label def credit_label 0 "no credit card", modify label def credit_label 1 "credit card owner", modify lab var cashshare "cash share of total trasanactions in a typical month" lab var age "age" lab var incometh "income measured in thousands of dollars" lab var educat "highlest level of education" lab var male "is a male" lab var credit "owns credit card" lab var cheque "owns checking account" lab var rating "total rating of cash out of 30" lab var holdings "total cash held in a typical month”
(1) I would like to understand the reasoning for this and any ideas would be really helpful. Also, I am thinking of removing the interaction term from my model because beforehand all coefficients were significant but I am still unsure about this.
(2) I would also like to understand more about the relationship between education and income through margins and marginsplot but I am unsure of the correct code. I began with the following code which gave me error message “only factor variables and their interactions are allowed r(198);”
Code:
margins incometh educat
0 Response to Interaction term insignificance & Marginsplot problem
Post a Comment