I am a student and do a thesis on the abnormal return generated by domestic terrorism events in the US, an event study.
For this I use dummy and continuous variables.
I use Stata version 15.1 using xtscc
I did an xtscc regression, since the panel data was cross-sectional correlated. I have ten specified industries I interpret, however I also have to interpret the impact on the entire NYSE.
The following table presents the impact of the events on the entire NYSE.
(1) | (2) | (3) | (4) | (5) | (6) | |
VARIABLES | US Casualties | Motive | Mortality Rate | Location | Dispersion | Suicide |
Act of terrorism (dummy) | 0.00197 | 0.0537** | 0.00496 | 0.0488** | 0.0118 | 0.00901 |
(0.0124) | (0.0182) | (0.0121) | (0.0185) | (0.0140) | (0.0126) | |
One year lag (numeric continuous) | -0.0181* | -0.0182* | -0.0181* | -0.0181* | -0.0181* | -0.0181* |
(0.00910) | (0.00910) | (0.00910) | (0.00910) | (0.00910) | (0.00910) | |
Islam inspired motive (dummy) | -0.0732** | |||||
(0.0320) | ||||||
Right wing political motive (dummy) | -0.0508** | |||||
(0.0184) | ||||||
Other motive (dummy) | -0.0336** | |||||
(0.0119) | ||||||
US Casualties (dummy) | 0.0315 | |||||
(0.0320) | ||||||
Mortality Rate US citizens (numeric continuous) | 0.00564* | |||||
(0.00261) | ||||||
Target New York City (dummy) | -0.0304 | |||||
(0.0249) | ||||||
Target Financial city (dummy) | -0.0628 | |||||
(0.0530) | ||||||
Other location (dummy) | -0.0388** | |||||
(0.0125) | ||||||
Dispersion in days (numeric continuous) | -0.000228 | |||||
(0.000460) | ||||||
Suicide by perpetrator(s) (dummy) | -0.0254 | |||||
(0.0768) | ||||||
Constant | 0.00374 | 0.00425 | 0.00370 | 0.00429 | 0.00386 | 0.00380 |
(0.00417) | (0.00417) | (0.00417) | (0.00417) | (0.00416) | (0.00416) | |
Observations | 42,770 | 42,770 | 42,770 | 42,770 | 42,770 | 42,770 |
R-squared | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Number of groups | 10 | 10 | 10 | 10 | 10 | 10 |
*** p<0.01, ** p<0.05, * p<0.1
I am stuck on the interpretation of the table, as I find it difficult to read the effect.
An example of my data is the following:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(industry date3) double Dispersion float(NewYorkCity Financialcities Terrorism suicide IslamInspired RightWingTerrorism OtherMotive nkillus USCasualties Otherlocation lag_norm) 1 1 0 0 0 0 0 0 0 0 0 0 0 . 1 2 0 0 0 0 0 0 0 0 0 0 0 .14726657 1 3 0 0 0 0 1 1 0 0 0 0 1 -.3925821 1 4 0 0 0 0 0 0 0 0 0 0 0 -1.4826362 1 5 0 0 0 0 0 0 0 0 0 0 0 .349348 1 6 0 0 0 0 0 0 0 0 0 0 0 -.55608904 1 7 0 0 0 0 0 0 0 0 0 0 0 -1.9572344 1 8 0 0 0 0 0 0 0 0 0 0 0 -.9028165 1 9 0 0 0 0 0 0 0 0 0 0 0 .1916338 1 10 0 0 0 0 0 0 0 0 0 0 0 .9699838 1 11 0 0 0 0 0 0 0 0 0 0 0 .9682758 1 12 0 0 0 0 0 0 0 0 0 0 0 .41327965 1 13 0 0 0 0 0 0 0 0 0 0 0 .001258254 1 14 0 0 0 0 0 0 0 0 0 0 0 -5.428175 1 15 0 0 0 0 0 0 0 0 0 0 0 -.0948005 1 16 0 0 0 0 0 0 0 0 0 0 0 .12732422 1 17 21 0 0 1 0 0 0 1 0 0 1 2.2153707 1 18 0 0 0 0 0 0 0 0 0 0 0 -5.388564 1 19 0 0 0 0 0 0 0 0 0 0 0 2.3124878 1 20 0 0 0 0 0 0 0 0 0 0 0 -3.1812844 1 21 0 0 0 0 0 0 0 0 0 0 0 4.726941 1 22 0 0 0 0 0 0 0 0 0 0 0 .9461601 1 23 0 0 0 0 0 0 0 0 0 0 0 -1.822937 1 24 0 0 0 0 0 0 0 0 0 0 0 -.5067613 1 25 0 0 0 0 0 0 0 0 0 0 0 .8031158 1 26 0 0 0 0 0 0 0 0 0 0 0 3.311516 1 27 0 0 0 0 0 0 0 0 0 0 0 .6476688 1 28 0 0 0 0 0 0 0 0 0 0 0 2.111576 1 29 0 0 0 0 0 0 0 0 0 0 0 .15575874 1 30 0 0 0 0 0 0 0 0 0 0 0 -.03409575 1 31 0 0 0 0 0 0 0 0 0 0 0 -1.8898008 1 32 0 0 0 0 0 0 0 0 0 0 0 2.612545 1 33 0 0 0 0 0 0 0 0 0 0 0 -1.880528 1 34 0 0 0 0 0 0 0 0 0 0 0 -.23485056 1 35 0 0 0 0 0 0 0 0 0 0 0 -.24395937 1 36 0 0 0 0 0 0 0 0 0 0 0 -2.0437975 1 37 0 0 0 0 0 0 0 0 0 0 0 2.1375442 1 38 0 0 0 0 0 0 0 0 0 0 0 -1.0830109 1 39 0 0 0 0 0 0 0 0 0 0 0 1.0365268 1 40 0 0 0 0 0 0 0 0 0 0 0 .24014443 1 41 0 0 0 0 0 0 0 0 0 0 0 1.0486 1 42 0 0 0 0 0 0 0 0 0 0 0 -.47032595 1 43 0 0 0 0 0 0 0 0 0 0 0 -.15876883 1 44 0 0 0 0 0 0 0 0 0 0 0 .3237863 1 45 0 0 0 0 0 0 0 0 0 0 0 .024296284 1 46 0 0 0 0 0 0 0 0 0 0 0 -1.103821 1 47 0 0 0 0 0 0 0 0 0 0 0 1.144811 1 48 0 0 0 0 0 0 0 0 0 0 0 -.5415889 1 49 0 0 0 0 0 0 0 0 0 0 0 .3856568 1 50 0 0 0 0 0 0 0 0 0 0 0 -1.426194 1 51 0 0 0 0 0 0 0 0 0 0 0 1.429711 1 52 0 0 0 0 0 0 0 0 0 0 0 .3579682 1 53 0 0 0 0 0 0 0 0 0 0 0 .033926666 1 54 0 0 0 0 0 0 0 0 0 0 0 -2.720959 1 55 0 0 0 0 0 0 0 0 0 0 0 -.2142462 1 56 57 0 0 1 0 0 0 1 0 0 1 .1400603 1 57 0 0 0 0 0 0 0 0 0 0 0 .9721905 1 58 0 0 0 0 0 0 0 0 0 0 0 .3362675 1 59 0 0 0 0 0 0 0 0 0 0 0 -.3609953 1 60 0 0 0 0 0 0 0 0 0 0 0 -2.3436384 1 61 0 0 0 0 0 0 0 0 0 0 0 .6113771 1 62 0 0 0 0 0 0 0 0 0 0 0 -2.7633216 1 63 0 0 0 0 0 0 0 0 0 0 0 -3.8684616 1 64 0 0 0 0 0 0 0 0 0 0 0 -.6188751 1 65 0 0 0 0 0 0 0 0 0 0 0 1.4791256 1 66 0 0 0 0 0 0 0 0 0 0 0 .09460098 1 67 0 0 0 0 0 0 0 0 0 0 0 1.4264836 1 68 0 0 0 0 0 0 0 0 0 0 0 .192537 1 69 0 0 0 0 0 0 0 0 0 0 0 -.10378847 1 70 0 0 0 0 0 0 0 0 0 0 0 .4740425 1 71 0 0 0 0 0 0 0 0 0 0 0 .7206583 1 72 0 0 0 0 0 0 0 0 0 0 0 -.21743584 1 73 0 0 0 0 0 0 0 0 0 0 0 -1.2229074 1 74 0 0 0 0 0 0 0 0 0 0 0 -.3419091 1 75 0 0 0 0 0 0 0 0 0 0 0 2.0386014 1 76 0 0 0 0 0 0 0 0 0 0 0 -.10929382 1 77 0 0 0 0 0 0 0 0 0 0 0 1.64022 1 78 0 0 0 0 0 0 0 0 0 0 0 -1.8230085 1 79 0 0 0 0 0 0 0 0 0 0 0 3.451079 1 80 0 0 0 0 0 0 0 0 0 0 0 .5227447 1 81 0 0 0 0 0 0 0 0 0 0 0 .8057634 1 82 0 0 0 0 0 0 0 0 0 0 0 1.1821617 1 83 0 0 0 0 0 0 0 0 0 0 0 -.7251104 1 84 40 0 0 1 0 0 0 9 0 0 9 .4699563 1 85 0 0 0 0 0 0 0 0 0 0 0 -.8884256 1 86 0 0 0 0 0 0 0 0 0 0 0 -1.2359784 1 87 0 0 0 0 0 0 0 0 0 0 0 .8916743 1 88 0 0 0 0 0 0 0 0 0 0 0 -1.816106 1 89 0 0 0 0 0 0 0 0 0 0 0 -1.6005353 1 90 0 0 0 0 0 0 0 0 0 0 0 -.6391434 1 91 0 0 0 0 0 0 0 0 0 0 0 .9389873 1 92 0 0 0 0 0 0 0 0 0 0 0 1.3203605 1 93 0 0 0 0 0 0 0 0 0 0 0 1.2037504 1 94 0 0 0 0 0 0 0 0 0 0 0 .9205027 1 95 0 0 0 0 0 0 0 0 0 0 0 1.2869184 1 96 0 0 0 0 0 0 0 0 0 0 0 -.51946497 1 97 0 0 0 0 0 0 0 0 0 0 0 .3548341 1 98 0 0 0 0 0 0 0 0 0 0 0 -.16927294 1 99 0 0 0 0 0 0 0 0 0 0 0 .3343731 1 100 0 0 0 0 0 0 0 0 0 0 0 -1.82412 end
These are the commands I used to get to the table.
*Outreg2 for all observations
Code:
xtscc norm_return Terrorism lag_norm USCasualties outreg2 using AllObservations.doc, replace ctitle(US Casualties) label xtscc norm_return Terrorism lag_norm IslamInspired RightWingTerrorism OtherMotive outreg2 using AllObservations.doc, append ctitle(Motive) label xtscc norm_return Terrorism lag_norm nkillus outreg2 using AllObservations.doc, append ctitle(Mortality Rate) label xtscc norm_return Terrorism lag_norm NewYorkCity Financialcities Otherlocation outreg2 using AllObservations.doc, append ctitle(Location) label xtscc norm_return Terrorism lag_norm Dispersion outreg2 using AllObservations.doc, append ctitle(Dispersion) label xtscc norm_return Terrorism lag_norm suicide outreg2 using AllObservations.doc, append ctitle(Suicide) label
Thanks in advance!
0 Response to Interpretation of Outreg2 table on terrorism event study
Post a Comment