Hi,

When running the log-logistic AFT regression with the i. command, the regression runs without problems.
However, I want to examine the effect of all the levels of the factor variables, therefore I suppress the constant term and use the ibn. command. Unfortunately, this results in a never-ending process in Stata. I hope someone is able to offer some help.

Below the commands I have used, and the corresponding output.

Code:
. stset E_Date, failure(AllButDiss==1) id(Strategy_Number) enter(time P_Date) origin(time P_Date)

                id:  Strategy_Number
     failure event:  AllButDiss == 1
obs. time interval:  (E_Date[_n-1], E_Date]
 enter on or after:  time P_Date
 exit on or before:  failure
    t for analysis:  (time-origin)
            origin:  time P_Date

------------------------------------------------------------------------------
      1,197  total observations
          0  exclusions
------------------------------------------------------------------------------
      1,197  observations remaining, representing
      1,197  subjects
        431  failures in single-failure-per-subject data
  3,031,231  total analysis time at risk and under observation
                                                at risk from t =         0
                                     earliest observed entry t =         0
                                          last observed exit t =     8,216

. format _origin %td
Output with the use of i.

Code:
. streg i.ComplexityOfStrategy i.Amount_of_addons Rushed2 i.Distance_Class Rushed_Strategy IVA IQA GDPA Hofstede Management_Participation ib(frequent).Entrytype Syndication PE_Experience PF_Experience PE_Experience_Total PF_Experience_Total logPFassets HOT_IPO HOT_MNA i.CountryGroup i.Exitgroup i.IndustryFE, dist(loglogistic)

         failure _d:  AllButDiss == 1
   analysis time _t:  (E_Date-origin)
             origin:  time P_Date
  enter on or after:  time P_Date
                 id:  Strategy_Number

Fitting constant-only model:

Iteration 0:   log likelihood = -794.10373  
Iteration 1:   log likelihood = -641.39899  
Iteration 2:   log likelihood = -625.25804  
Iteration 3:   log likelihood = -622.63158  
Iteration 4:   log likelihood = -622.62781  
Iteration 5:   log likelihood = -622.62781  

Fitting full model:

Iteration 0:   log likelihood = -622.62781  (not concave)
Iteration 1:   log likelihood = -352.75977  
Iteration 2:   log likelihood = -248.90424  
Iteration 3:   log likelihood = -218.59155  
Iteration 4:   log likelihood = -216.41335  
Iteration 5:   log likelihood = -216.39369  
Iteration 6:   log likelihood = -216.39088  
Iteration 7:   log likelihood =  -216.3904  
Iteration 8:   log likelihood = -216.39029  
Iteration 9:   log likelihood = -216.39027  
Iteration 10:  log likelihood = -216.39026  

Loglogistic AFT regression

No. of subjects =          917                  Number of obs    =         917
No. of failures =          299
Time at risk    =      2162758
                                                LR chi2(59)      =      812.48
Log likelihood  =   -216.39026                  Prob > chi2      =      0.0000

----------------------------------------------------------------------------------------------------------------------
                                                  _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------------------------------------------------+----------------------------------------------------------------
                                ComplexityOfStrategy |
                                        Less simple  |  -.0954882   .0552878    -1.73   0.084    -.2038503    .0128738
                                        Complicated  |   .0107155   .1176821     0.09   0.927    -.2199372    .2413682
                                            Hardest  |   .0024944   .1019187     0.02   0.980    -.1972626    .2022514
                                                     |
                                    Amount_of_addons |
                                                Two  |   .0456722   .0675602     0.68   0.499    -.0867434    .1780878
                                              Three  |    .143727   .0881328     1.63   0.103    -.0290101    .3164641
                                               More  |    .175721    .090347     1.94   0.052    -.0013558    .3527978
                                                     |
                                             Rushed2 |  -.2387015   .0614137    -3.89   0.000    -.3590701    -.118333
                                                     |
                                      Distance_Class |
                                              Close  |  -.1921864   .1024587    -1.88   0.061    -.3930018     .008629
                                                Far  |  -.1300751   .0847157    -1.54   0.125    -.2961148    .0359645
                                           Furthest  |  -.1107476   .1129013    -0.98   0.327    -.3320302    .1105349
                                                     |
                                     Rushed_Strategy |   -.144368   .0963647    -1.50   0.134    -.3332394    .0445033
                                                 IVA |   .0835171   .0710105     1.18   0.240    -.0556609    .2226951
                                                 IQA |   .1179008   .0664508     1.77   0.076    -.0123404    .2481419
                                                GDPA |   .0739022   .0862538     0.86   0.392    -.0951521    .2429566
                                            Hofstede |  -.0141526   .0756615    -0.19   0.852    -.1624463    .1341412
                            Management_Participation |  -.0003944   .0739337    -0.01   0.996    -.1453017     .144513
                                                     |
                                           Entrytype |
                                         Divisional  |   .1910839   .0765114     2.50   0.013     .0411243    .3410435
                                          Financial  |   .0607783   .0732364     0.83   0.407    -.0827625    .2043191
                                      Privatization  |   2.336045   1499.755     0.00   0.999     -2937.13    2941.802
                                     Public Private  |  -.0417583   .1592139    -0.26   0.793    -.3538118    .2702952
                                       Receivership  |   .1329239   .4155704     0.32   0.749     -.681579    .9474268
                                                     |
                                         Syndication |   -.065033   .0715985    -0.91   0.364    -.2053634    .0752974
                                       PE_Experience |  -.0706476   .0863322    -0.82   0.413    -.2398557    .0985604
                                       PF_Experience |  -.0175077   .0674334    -0.26   0.795    -.1496746    .1146593
                                 PE_Experience_Total |  -.0020519   .0027999    -0.73   0.464    -.0075396    .0034359
                                 PF_Experience_Total |  -.0128685   .0117465    -1.10   0.273    -.0358913    .0101542
                                         logPFassets |   .0104936   .0133145     0.79   0.431    -.0156024    .0365896
                                             HOT_IPO |   -.035915   .0673371    -0.53   0.594    -.1678933    .0960633
                                             HOT_MNA |  -1.332052   .1012851   -13.15   0.000    -1.530567   -1.133537
                                                     |
                                        CountryGroup |
                                     United Kingdom  |   .0518508   .1062872     0.49   0.626    -.1564683    .2601698
                                               Asia  |  -.2274857   .2098015    -1.08   0.278     -.638689    .1837177
                                          Australia  |  -.2815091   .2057906    -1.37   0.171    -.6848514    .1218331
                                      United States  |  -.1388959   .1206453    -1.15   0.250    -.3753563    .0975646
                                     Western Europe  |   .0622211   .1006128     0.62   0.536    -.1349763    .2594185
                                     Rest of Europe  |   .1227931   .1191162     1.03   0.303    -.1106704    .3562566
                                      Rest of world  |  -.6918487   .2667168    -2.59   0.009    -1.214604   -.1690933
                                             Canada  |   .1686683   .1844434     0.91   0.360    -.1928342    .5301707
                                                     |
                                           Exitgroup |
                                       Post Dot-com  |   .5940238   .3330951     1.78   0.075    -.0588305    1.246878
                                      Buyout Growth  |   .2989711   .3477749     0.86   0.390    -.3826552    .9805974
                                        Buyout peak  |   1.198395   .3562699     3.36   0.001     .5001184    1.896671
                                   Financial Crisis  |   .6131937    .343153     1.79   0.074    -.0593738    1.285761
                              Post-Financial Crisis  |   2.238238   .3456952     6.47   0.000     1.560688    2.915789
                                       Recent years  |   2.399773   .3346468     7.17   0.000     1.743877    3.055669
                                                     |
                                          IndustryFE |
      Administrative and Support Service Activities  |   .1317598   .1558593     0.85   0.398    -.1737189    .4372385
                 Arts, Entertainment adn Recreation  |  -.1493985   .1943511    -0.77   0.442    -.5303196    .2315227
                                        Constrution  |  -.2964692   .2165589    -1.37   0.171    -.7209169    .1279784
                                          Education  |   .1146167    .226205     0.51   0.612     -.328737    .5579704
             Electricity, Gas, Steam, and AC supply  |  -.1123549   .2480989    -0.45   0.651    -.5986199    .3739101
                 Financial and Insurance Activities  |  -.0441494    .198536    -0.22   0.824    -.4332728    .3449741
            Human Health and Social Work Activities  |   .0164787   .1491182     0.11   0.912    -.2757875    .3087449
                      Information and Communication  |  -.0435149   .1401087    -0.31   0.756    -.3181228    .2310931
                                      Manufacturing  |    .127394   .1372691     0.93   0.353    -.1416484    .3964365
                           Other Service Activities  |  -.0300531    .222353    -0.14   0.892    -.4658569    .4057507
Professional, Scientific, and Technical Motorcycles  |  -.0745649   .1480577    -0.50   0.615    -.3647528    .2156229
                  Public Administration adn Defence  |   2.759867   407.9724     0.01   0.995    -796.8514    802.3712
                             Real Estate Activities  |     -.1176   .2303223    -0.51   0.610    -.5690234    .3338233
                              Transport and Storage  |  -.1036479    .176026    -0.59   0.556    -.4486525    .2413568
                                       Water Supply  |  -.6442967   .2487774    -2.59   0.010    -1.131891    -.156702
                         Wholesale and Retail Trade  |    .188224   .1475216     1.28   0.202     -.100913     .477361
                                                     |
                                               _cons |   6.542539   .3996965    16.37   0.000     5.759148    7.325929
-----------------------------------------------------+----------------------------------------------------------------
                                            /lngamma |  -1.447804   .0479036   -30.22   0.000    -1.541694   -1.353915
-----------------------------------------------------+----------------------------------------------------------------
                                               gamma |   .2350859   .0112615                      .2140183    .2582273
When using ibn.

Code:
. streg ibn.ComplexityOfStrategy ibn.Amount_of_addons Rushed2 ibn.Distance_Class Rushed_Strategy IVA IQA GDPA Hofstede Management_Participation ib(frequent).Entrytype Syndication PE_Experience PF_Experience PE_Experience_Total PF_Experience_Total logPFassets HOT_IPO HOT_MNA ibn.CountryGroup ibn.Exitgroup ibn.IndustryFE, noconstant distribution(loglogistic)

         failure _d:  AllButDiss == 1
   analysis time _t:  (E_Date-origin)
             origin:  time P_Date
  enter on or after:  time P_Date
                 id:  Strategy_Number
note: 4.Amount_of_addons omitted because of collinearity
note: 4.Distance_Class omitted because of collinearity
note: 9.CountryGroup omitted because of collinearity
note: 7.Exitgroup omitted because of collinearity
note: 17.IndustryFE omitted because of collinearity
Fitting full model:

Iteration 0:   log likelihood = -1277.4143  (not concave)
Iteration 1:   log likelihood = -964.59332  (not concave)
Iteration 2:   log likelihood = -716.47672  (not concave)
Iteration 3:   log likelihood = -576.60045  (not concave)
Iteration 4:   log likelihood = -477.67092  (not concave)
Iteration 5:   log likelihood = -430.82136  (not concave)
Iteration 6:   log likelihood = -407.18757  (not concave)
Iteration 7:   log likelihood =  -388.9725  (not concave)
Iteration 8:   log likelihood = -374.02856  (not concave)
Iteration 9:   log likelihood = -362.46854  (not concave)
Iteration 10:  log likelihood = -353.54827  (not concave)
Iteration 11:  log likelihood = -347.93093  (not concave)
Iteration 12:  log likelihood = -342.38816  (not concave)
Iteration 13:  log likelihood =  -330.3993  (not concave)
Iteration 14:  log likelihood = -327.98006  (not concave)
Iteration 15:  log likelihood = -325.48768  (not concave)
Iteration 16:  log likelihood =  -323.8431  (not concave)
Iteration 17:  log likelihood = -322.35456  (not concave)
Iteration 18:  log likelihood = -320.75957  (not concave)
Iteration 19:  log likelihood = -318.08191  (not concave)

Kind regards,

Michael