I have a Fractional Response Model where my dependent variable is bounded between 0 and 1 - with a lot of zeros.
Some of my independent variables lie between 0 and 1 as well, but not all of them.
Should I go for
Code:
margins, dydx(*)
Code:
margins, dyex(*)
Here is the output as well:
Code:
fracreg logit y x1 x2 x3 x4 if datayearfiscal==2008 Iteration 0: log pseudolikelihood = -197.08665 Iteration 1: log pseudolikelihood = -182.02928 Iteration 2: log pseudolikelihood = -181.99607 Iteration 3: log pseudolikelihood = -181.99607 Fractional logistic regression Number of obs = 279 Wald chi2(4) = 87.36 Prob > chi2 = 0.0000 Log pseudolikelihood = -181.99607 Pseudo R2 = 0.0589 ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | 1.254019 .3392668 3.70 0.000 .5890682 1.91897 x2 | -2.369368 .9091443 -2.61 0.009 -4.151258 -.5874784 x3 | .1100148 .1341461 0.82 0.412 -.1529068 .3729364 x4 | -2.741405 .4381923 -6.26 0.000 -3.600246 -1.882564 _cons | .2069838 .2960355 0.70 0.484 -.3732351 .7872028 ------------------------------------------------------------------------------
Code:
margins, dydx(*) Average marginal effects Number of obs = 279 Model VCE : Robust Expression : Conditional mean of y, predict() dy/dx w.r.t. : x1 x2 x3 x4 ------------------------------------------------------------------------------ | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | .2888261 .0765901 3.77 0.000 .1387123 .4389399 x2 | -.5457139 .2072 -2.63 0.008 -.9518185 -.1396092 x3 | .0253387 .0308573 0.82 0.412 -.0351405 .0858178 x4 | -.6314015 .0943868 -6.69 0.000 -.8163962 -.4464069 ------------------------------------------------------------------------------
Code:
margins, dyex(*) Average marginal effects Number of obs = 279 Model VCE : Robust Expression : Conditional mean of y, predict() dy/ex w.r.t. : x1 x2 x3 x4 ------------------------------------------------------------------------------ | Delta-method | dy/ex Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x1 | .1726102 .0459446 3.76 0.000 .0825605 .2626599 x2 | -.061035 .0229026 -2.66 0.008 -.1059233 -.0161466 x3 | .0125208 .0152707 0.82 0.412 -.0174091 .0424508 x4 | -.1666824 .0238142 -7.00 0.000 -.2133574 -.1200074 ------------------------------------------------------------------------------
1% increase in x1 increases the value of y by 0.173
Does that make sense to talk about 1% change in x1 while it is already in percentage as well. Would it be better to go for dydx, instead?
Thanks a lot.
0 Response to Marginal Effects of a Fractional Response Model
Post a Comment