Hi. I am using Stata 15.1 and here is sample of my data. My main predictor variables are winpowersh winpowercus powerstaff winpowertv pwrpublic whereas the rest are control variables. The outcome variable is sd8st.


Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input float sd8st byte(winpowersh winpowercus powerstaff pwrpublic) float(winpowertv logta) double winroe float logtobin double(debt age) byte gbi
2.2916667 0 0 0 0 0 14.239168   .05294823145435599   -.31732535  .46726300753238215 30.833333333333332 0
 4.064394 0 0 0 0 0 14.506706   .08026226252787182   -.19081886   .5317689494514303 31.083333333333336 0
 2.791667 0 0 0 0 0 10.991343  -.04889071865239451     .7466849  .18255332052966744              18.25 2
2.2083333 0 0 0 0 0 11.921798   .06746456612623636   .015695516   .4787392367385989              13.25 0
4.3360357 0 0 0 0 0  13.87127   .15350707801002095    .29696715               .3722  4.083333333333333 0
 2.395833 0 0 0 0 0 11.987264   .15350707801002095    -.3629666   .1688851551075018 26.166666666666668 0
2.2083333 0 0 0 0 0 14.266216   .06415065826940003   -.24985418   .5446232013248214 15.166666666666668 0
   2.4375 0 0 0 0 0 13.624822 .0071320555442205445   -.58335215  .19339779038952554                 26 0
 2.666667 0 0 0 0 0 14.173757   .08687234638901288   -.27547094   .4613930362862616 29.833333333333332 0
1.5833334 0 0 0 0 0 12.579242  -.04889071865239451   -.06245073   .5052570696742475 23.083333333333332 0
        2 0 0 0 0 0 14.207354 -.048065127560500805    -.4244451   .4199003045199519 30.083333333333336 0
 2.770833 0 0 0 0 0 12.740792   .15350707801002095   -.50385123  .12091307990181432 32.083333333333336 0
    2.375 0 0 0 0 0  12.73841   .10905893738050841    -.3549458   .2536246777574857 31.083333333333336 0
    2.375 0 0 0 0 0  12.67783   .10057880254293576    -.1722317  .27671402100061765 30.083333333333336 0
2.3333333 0 0 0 0 0  11.93374   .09452965382291158   -.12927127   .5437106092436975                 27 0
1.6666666 0 0 0 0 0 13.211438   .14282739760084529     .3177111   .4112857929565792                 13 0
1.5833334 0 0 0 0 0 13.137717  .009517116053677933    -.4150076   .4927757732364851                 12 0
 2.395833 0 0 0 0 0 13.591644  .025474341822720827   -.56330365   .1902674682458076                 25 0
1.9829545 0 0 0 0 0 14.183026 -.028286338676147077    -.4342451   .4277529495021958 31.083333333333336 0
1.7708334 0 0 0 0 0 12.989533   .05996759443454595   -.22175293   .6038733962682187              16.25 0
    2.625 0 0 0 0 0 12.058269   .03799204634042847    .23281607  .41260723394389054              20.25 0
   1.9375 0 0 0 0 0 11.290694   .06610567305897101    -.4949625  .06352952930450964 23.583333333333332 0
   2.0625 0 0 0 0 0 11.311886  -.04889071865239451    .02170962   .4655939746662102 25.666666666666668 0
   2.0625 0 0 0 0 0  11.46179  -.04889071865239451   -.08427203   .5200968268168183 24.666666666666668 0
 3.416667 0 0 0 0 0 14.473316  .046336797237120274    -.4559155   .3967621695763699              23.75 0
2.2083333 0 0 0 0 0 11.774474   .15350707801002095 -.0037098925  .27496266186274965              14.25 0
1.6666666 0 0 0 0 0 13.101131  -.04889071865239451   -.25075278   .6959423570366254              21.25 0
1.7916666 0 0 0 0 0 14.041067   .08980034033519187   -.10520446   .7082871781775231 31.083333333333336 0
   2.8125 0 0 0 0 0 14.511697  .041881297017547336   -.06134725   .5476896066820631 30.833333333333332 0
     2.25 0 0 0 0 0 13.266334   .09021447858807585    .06207087  .15660908343074859 28.333333333333332 0
 3.291667 0 0 0 0 0  14.25218   .15350707801002095    -.4532536   .4882681925242885 30.083333333333336 0
3.0492425 0 0 0 0 0 13.215508  .027590464333851202     .0145885  .11451139738707385 29.333333333333332 0
 3.632576 0 0 0 0 0 13.169182   .06387687845318817    -.6117204  .29463743830706574 29.666666666666668 0
2.2083333 0 0 0 0 0  10.53327  -.04889071865239451     .6827319   .5799861495844876 18.333333333333332 0
 2.583333 0 0 0 0 0 12.849533  -.04889071865239451     .0576499   .8199500277185893 19.583333333333332 0
 2.848485 0 0 0 0 0  13.06875   .15350707801002095     .2248707   .5879826967714707              15.25 0
1.9166666 0 0 0 0 0  12.78078   .10942161305109072   -.07265077  .25094984267790904 19.833333333333332 0
   2.8125 0 0 0 0 0 14.442632  .021242555099128112   -.07928707   .5329463047206702 29.833333333333332 0
 2.708333 0 0 0 0 0 13.304167   .04167297490656383    .10697688   .4382738386063443                 15 0
2.2954545 0 0 0 0 0  13.85133   .10233340107524895   -.22423366  .42555197073136847 16.583333333333332 0
2.2291667 0 0 0 0 0 12.970284  .058325406042638125    2.3264396  .20202579984166164 22.666666666666668 0
2.3333333 0 0 0 0 0 12.952185   .06286667814432717    -.4549696   .2838625085060829 21.083333333333332 0
 2.278409 0 0 0 0 0 14.233975   .06371479245060213    -.2084066   .7102229691891497              26.75 0
 3.291667 0 0 0 0 0   13.1943   .08143609549505651    .26630947  .38123705315349354                 14 0
 3.753788 0 0 0 0 0 14.286483  .010246165967668273   -.54395086    .462697722395353 32.083333333333336 2
 3.753247 0 0 0 0 0  14.45894   .07597470241436134   -.10019578   .5318768572697248 30.083333333333336 1
2.2121212 0 0 0 0 0 11.318455  .006842140829841871    -.7036114  .28101351925856644 21.833333333333332 0
   1.9375 0 0 0 0 0   11.3944  -.01985668652335319    -.6049169   .3479729349380228 20.833333333333332 0
1.7916666 0 0 0 0 0  13.99624  .030343159988526484    -.1098341   .6886435910490865 32.083333333333336 0
 3.102273 0 0 0 0 0 14.854198   .07067050862286085   -.04931026   .5728110807841716 18.333333333333332 0
2.0359848 0 0 0 0 0 12.783222  .021711007368243433   -.53942055  .45094345449491985 19.333333333333332 0
 2.003788 0 0 0 0 0  13.07035  -.04889071865239451   -.21019833  .41360095057915386 30.833333333333332 0
1.6666666 0 0 0 0 0  13.91102   .15350707801002095    -.1094732   .7032975223137191 30.083333333333336 0
2.9242425 0 0 0 0 0 14.464911    .0769787608060392   -.27564496   .4508630150653497                 18 0
    3.125 0 0 0 0 0 11.860895  -.04784118410438076    .04825909   .3960344304083492              19.25 0
 2.153409 0 0 0 0 0  13.58439  .017061994263510884    -.4030683   .4104628907455871 32.083333333333336 1
3.2329545 0 0 0 0 0 13.719903   .15350707801002095     .5943209   .5598440176888518 32.083333333333336 0
 2.852273 0 0 0 0 0 17.952454   .07195409371835504     .2088956  .46532004708430297                  1 0
4.3777056 0 0 0 0 0 16.136366    .0340006103167885 -.0015164106   .5160640592687961 32.083333333333336 2
 2.541667 0 0 0 0 0 12.780442    .0673387140972849   -.15952496   .2294778745615171 20.833333333333332 0
2.2121212 0 0 0 0 0 12.950326   .06970238184574284    -.5939475   .2086328371823438 13.416666666666666 0
 2.791667 0 0 0 0 0 13.266384   .04703599377336313    -.3428546  .34586651057919765 25.583333333333332 0
2.3333333 0 0 0 0 0 14.724997    .1321413777998075    -.3220526  .18912449099835807                 15 0
1.7083334 0 0 0 0 0  12.58096   .06519879914546459    -.2327994 .023490717128461746 20.083333333333332 0
   1.9375 0 0 0 0 0 12.991263   .04478105205177637   -.24980025   .5860362774047176              17.25 0
   1.9375 0 0 0 0 0 11.427063  .017528843849498443     -.509178   .3634441877696901 19.833333333333332 0
 2.729167 0 0 0 0 0  13.75691   .15350707801002095   -.04923254  .42568636515941316 15.583333333333332 0
      1.5 0 0 0 0 0 12.521963   .15350707801002095    -.5866695  .24713083676028816 24.083333333333332 0
 2.729167 0 0 0 0 0 13.612513  .062146640944874876    -.5204086  .17508820502768657                 24 0
     2.25 0 0 0 0 0  14.55436  .039354715338151075    -.3623687   .5578723772156966 16.166666666666668 0
1.9166666 0 0 0 0 0 11.950264   .09177624936151005  -.064155445   .4563858502628214              18.75 0
    2.375 0 0 0 0 0  13.21545   .09364049113472159    2.0353673   .2506801462883966 24.666666666666668 0
1.9166666 0 0 0 0 0 11.214816  -.01361548215436423    -.1838209  .35184985583789175 23.666666666666668 0
 2.395833 0 0 0 0 0 12.034234   .13235767945869864   -.11571672   .2997512216264999 25.166666666666668 0
   2.0625 0 0 0 0 0 10.052296  -.04889071865239451   -.16605575  .25976991684260414 20.916666666666668 0
 2.458333 0 0 0 0 0 13.127112  .038776167760066586     .1029391   .5551932799872606               24.5 0
   2.4375 0 0 0 0 0 11.666744  .041741605008537276     .4663056   .2467503515450835              19.75 0
2.3333333 0 0 0 0 0 11.730067    .0848704552724171   -.14743829   .4716141390078228                 26 0
 2.395833 0 0 0 0 0 11.979818   .03412034747695419     -.413039  .15054262302276447 27.166666666666668 0
 2.897727 0 0 0 0 0 14.767964   .06029360346859468    -.1323448   .5950534381301689 17.166666666666668 0
   1.6875 0 0 0 0 0 13.239556  -.04889071865239451     -.385875   .5851916153178409              20.25 0
 3.598485 0 0 0 0 0 15.803253   .03294424095663211   -.31807145   .5319953122589579 25.833333333333332 0
   1.9375 0 0 0 0 0 11.232338  -.04889071865239451    -.7393987  .03297852622659994 24.583333333333332 0
 2.715909 0 0 0 0 0 18.021233    .0636237897648686    .33071935   .4286630186822526 1.5833333333333333 0
      1.5 0 0 0 0 0 13.277675  .013656057890796906     .1878538  .16968516003979378              20.75 0
 2.965909 0 0 0 0 0 14.427778   .08729609342081503    -.1768751   .4596256119179664                 17 0
end
I run hausman test to choose between pool ols, fixed effect or random effect model.

Code:
 hausman fixed
 
                 ---- Coefficients ----
             |      (b)         (B)            (b-B)     sqrt(diag(V_b-V_B))
             |     fixed          .          Difference          S.E.
-------------+----------------------------------------------------------------
  winpowersh |  -.2715399    -.3195323        .0479923        .0918443
 winpowercus |    .1962471    .2391097       -.0428626        .0459824
  powerstaff |    .0357576    .1057848       -.0700272        .0194739
  winpowertv |    .3212632    .4606821       -.1394189        .0703318
   pwrpublic |     .066142     .1214229       -.0552808        .0167976
       logta |    .0342156      .188359       -.1541433        .0965926
      winroe |  -.8901204    -.8233513       -.0667691        .2650299
    logtobin |  -.0942411     .0914538        -.185695        .1543165
        debt |  -.0845396    -.0157862       -.0687534          .28107
       ageyr |    .1058631    .0109533        .0949098        .0261027
         gbi |    .0630154      .128724       -.0657086        .0117695
------------------------------------------------------------------------------
                           b = consistent under Ho and Ha; obtained from xtreg
            B = inconsistent under Ha, efficient under Ho; obtained from xtreg
 
    Test: Ho:  difference in coefficients not systematic
 
                 chi2(11) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                          =       64.86
                Prob>chi2 =      0.0000
The statistic reject the null hypothesis and suggested fixed effects panel model.


I first run a single regression model which is
Code:
 xtreg sd8st fivetotpower , fe vce(robust)
I found that the total power of stakeholders positively related with sustainability score. I later want to know which stakeholders group are dominant to impact the sustainability score by running the following model

Code:
xtreg sd8st winpowersh winpowercus  powerstaff winpowertv pwrpublic logta winroe logtobin debt ageyr gbi, fe vce (robust)

The fixed effect regression result shows that most of the predictor variables are not significant.

Code:
Fixed-effects (within) regression               Number of obs     =        420
Group variable: code                            Number of groups  =        140
 
R-sq:                                           Obs per group:
     within = 0.1790                                         min =          3
     between = 0.0205                                         avg =        3.0
     overall = 0.0246                                         max =          3
 
                                               F(11,139)         =       4.89
corr(u_i, Xb)  = -0.7342                        Prob > F          =    0.0000
 
                                 (Std. Err. adjusted for 140 clusters in code)
------------------------------------------------------------------------------
             |               Robust
       sd8st |      Coef.  Std. Err.      t    P>|t|    [95% Conf. Interval]
-------------+----------------------------------------------------------------
  winpowersh | -.2715399   .2423346    -1.12  0.264    -.7506786    .2075987
 winpowercus |  .1962471    .160246     1.22  0.223    -.1205877    .5130819
  powerstaff |  .0357576   .0451849     0.79  0.430     -.053581    .1250962
  winpowertv |  .3212632   .2146548     1.50  0.137    -.1031475    .7456739
   pwrpublic |    .066142   .036404     1.82   0.071   -.0058352    .1381193
       logta |  .0342156   .1768392     0.19  0.847    -.3154269    .3838582
      winroe | -.8901204   .7250859    -1.23  0.222    -2.323744    .5435034
    logtobin | -.0942411   .1710528    -0.55  0.583    -.4324429    .2439606
        debt | -.0845396   .4504337    -0.19  0.851    -.9751271    .8060479
       ageyr |  .1058631   .0301443     3.51  0.001     .0462625    .1654638
         gbi |  .0630154   .0550184     1.15  0.254    -.0457658    .1717966
       _cons |  .0862713   1.986048     0.04  0.965    -3.840498    4.013041
-------------+----------------------------------------------------------------
     sigma_u | 1.0222132
     sigma_e | .37382097

         rho |  .88204052   (fraction of variance due to u_i)

I run some descriptive statistics to have an idea what is my data pointed me to.

Code:
 xtsum winpowersh winpowercus  powerstaff winpowertv pwrpublic logta winroe logtobin debt age gbi
 
Variable         |     Mean   Std. Dev.       Min        Max |   Observations
-----------------+--------------------------------------------+----------------
winpow~h overall |  .0571429   .2323922          0          1 |     N =    420
         between |             .1996914          0          1 |     n =    140
         within |             .1196654  -.6095238  .7238095 |     T =       3
                 |                                            |
winpow~s overall |  .0952381   .2938936          0         1 |     N =     420
         between |             .2375121          0          1 |     n =    140
         within |             .1738698  -.5714286  .7619048 |     T =       3
                 |                                            |
powers~f overall |  .9452381   .9693888          0          3 |     N =    420
         between |             .8190485          0          3 |     n =    140
         within |             .5216094  -.7214286  2.945238 |     T =       3
                 |                                            |
winpow~v overall |  .0142857   .1188076          0          1 |     N =    420
         between |             .0786723          0  .6666667 |     n =     140
         within |             .0891933   -.652381  .6809524 |     T =       3
                 |                                            |
pwrpub~c overall |   1.37619   1.140031          0          3 |     N =    420
         between |              .975186          0          3 |     n =    140
         within |             .5943248  -.6238095   3.37619 |     T =       3
                 |                                            |
logta    overall | 13.71069   1.324127   10.01534  18.02123 |     N =     420
         between |             1.310805   10.05519  17.96488 |     n =     140
         within |             .2080917   12.09197  14.69014 |     T =       3
                 |                                            |
winroe   overall | .0520414   .0608951  -.0488907  .1535071 |     N =     420
         between |             .0508236  -.0488907  .1535071 |     n =     140
         within |             .0337269  -.0551456  .1869733 |     T =       3
                 |                                            |
logtobin overall | -.1330402   .3817596  -1.002916   2.32644 |     N =     420
         between |             .3689297  -.8758939  2.171567 |     n =     140
         within |             .1013951  -.4634964  .2710581 |     T =       3
                 |                                            |
debt     overall | .4473444    .187458   .0234907  .9146833 |     N =     420
         between |             .1791725   .0498293  .8563605 |     n =     140
         within |             .0564884   .0403117  .6828321 |     T =       3
                 |                                            |
age      overall | 21.15913   7.961744         .5  32.08333 |     N =     420
         between |             7.938848   1.027778  31.08333 |     n =     140
         within |             .8154065   20.15913  22.15913 |     T =       3
                 |                                            |
gbi      overall |   .147619   .579786          0          5 |     N =    420
         between |             .3943474          0  2.333333 |     n =     140
         within |             .4258923  -2.185714  2.814286 |     T =       3
I am trying to understand why the result in the fixed effect became not significant whereas if using pooled ols most of the main predictor variables are significant. I hope to discuss with statalist what or where do I miss in interpretating the data.

Thank you.