I am using Stata 15.1 and want to estimate the marginal effects of an ordered logit model that has an outcome variable with three categories.
When running the model
Code:
xtologit insurance_type rain_previous WTP_group P_InsuranceC Female age2 Educ2 /// i.InsuranceExp##i.InsuranceUnderstanding Trust_Company HHsize2 DepRate Crowding RCSI /// FamilyRemittances DurationFarmer RainFed log_Yield AverProdSold AverDangerProdLoss /// RiskAversion, vce(robust) nolog
HTML Code:
Random-effects ordered logistic regression Number of obs = 218 Group variable: HHid Number of groups = 56 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 3.9 max = 5 Integration method: mvaghermite Integration pts. = 12 Wald chi2(23) = 50.98 Log pseudolikelihood = -185.80101 Prob > chi2 = 0.0007 (Std. Err. adjusted for 56 clusters in HHid) ----------------------------------------------------------------------------------------------------- | Robust insurance_type | Coef. Std. Err. z P>|z| [95% Conf. Interval] ------------------------------------+---------------------------------------------------------------- rain_previous | -.0622835 .1704658 -0.37 0.715 -.3963903 .2718234 WTP_group | 4.129787 2.252134 1.83 0.067 -.2843142 8.543888 P_InsuranceC | -.1946897 .5041385 -0.39 0.699 -1.182783 .7934037 Female | -.6773839 .45346 -1.49 0.135 -1.566149 .2113813 age2 | -.0001368 .0002462 -0.56 0.579 -.0006194 .0003458 Educ2 | -.0168312 .0207194 -0.81 0.417 -.0574405 .0237782 1.InsuranceExp | .6841136 1.052551 0.65 0.516 -1.378848 2.747075 | InsuranceUnderstanding | 2 | -.3914879 1.11747 -0.35 0.726 -2.581688 1.798713 3 | .7297591 .9662533 0.76 0.450 -1.164063 2.623581 | InsuranceExp#InsuranceUnderstanding | 1 2 | .4299672 1.260509 0.34 0.733 -2.040586 2.90052 1 3 | -.1093954 1.09006 -0.10 0.920 -2.245873 2.027083 | Trust_Company | -.0792627 .3887562 -0.20 0.838 -.8412109 .6826855 HHsize2 | .0092903 .0036231 2.56 0.010 .0021892 .0163913 DepRate | .0620267 .6466889 0.10 0.924 -1.20546 1.329514 Crowding | .3460283 .3461374 1.00 0.317 -.3323885 1.024445 RCSI | .2281215 .1541255 1.48 0.139 -.073959 .530202 FamilyRemittances | -.1089542 .3493816 -0.31 0.755 -.7937295 .5758211 DurationFarmer | -.0098795 .0386288 -0.26 0.798 -.0855906 .0658316 RainFed | .3382859 .5544276 0.61 0.542 -.7483723 1.424944 log_Yield | -.2135142 .1554528 -1.37 0.170 -.5181961 .0911678 AverProdSold | .0096645 .0057879 1.67 0.095 -.0016795 .0210086 AverDangerProdLoss | -.1618212 .1662221 -0.97 0.330 -.4876106 .1639681 RiskAversion | .5916548 .4358455 1.36 0.175 -.2625866 1.445896 ------------------------------------+---------------------------------------------------------------- /cut1 | 1.675089 2.847313 -3.905542 7.25572 /cut2 | 4.032432 2.901428 -1.654263 9.719127 ------------------------------------+---------------------------------------------------------------- /sigma2_u | 6.80e-32 1.25e-31 1.83e-33 2.52e-30 -----------------------------------------------------------------------------------------------------
Code:
margins, dydx(*) predict(outcome(3))
r(459);"
I can avoid this problem by dropping the binary trust variable but this is not what I want. Also when running the binary logit, it works perfectly with the specified variables. Can someone explain why the calculation does not run through? Is there a way to fix this or are the variables simply not made for this model?
Thanks!!!
0 Response to Ordered Logit model: discontinuous region with missing values encountered when estimating ME
Post a Comment