Clyde Schechter
is the effect of age on seius different for male and female?
reg seius i.female##c.age
margins female
margins, at(age=(20(10)60))
margins female, at(age=(20(10)60))
margins, dydx(female) at(age=(20(10)60))
reg seius i.female##c.age
Source SS df MS Number of obs = 1148
F( 3, 1144) = 3.71
Model 1273.17883 3 424.392942 Prob > F = 0.0114
Residual 131023.563 1144 114.531087 R-squared = 0.0096
Adj R-squared = 0.0070
Total 132296.742 1147 115.341536 Root MSE = 10.702
seius Coef. Std. Err. t P>t [95% Conf. Interval]
1.female 1.11425 2.131621 0.52 0.601 -3.068075 5.296576
age .1177876 .0480567 2.45 0.014 .0234984 .2120768
female#c.age
1 -.0774017 .0660201 -1.17 0.241 -.2069357 .0521324
_cons 10.99175 1.55593 7.06 0.000 7.938952 14.04454
Predictive margins Number of obs = 1148
Model VCE : OLS
Expression : Linear prediction, predict()
Delta-method
Margin Std. Err. t P>t [95% Conf. Interval]
female
0 14.62316 .4349116 33.62 0.000 13.76984 15.47647
1 13.3511 .4598713 29.03 0.000 12.44882 14.25339
. margins, at(age=(20(10)60))
Predictive margins Number of obs = 1148
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : age = 20
2._at : age = 30
3._at : age = 40
4._at : age = 50
5._at : age = 60
Delta-method
Margin Std. Err. t P>t [95% Conf. Interval]
_at
1 13.1427 .4792111 27.43 0.000 12.20247 14.08293
2 13.95514 .3172715 43.98 0.000 13.33264 14.57764
3 14.76759 .4378812 33.73 0.000 13.90845 15.62673
4 15.58003 .70914 21.97 0.000 14.18867 16.97139
5 16.39247 1.016897 16.12 0.000 14.39728 18.38767
margins female, at(age=(20(10)60))
Predictive margins Number of obs = 1148
Model VCE : OLS
Expression : Linear prediction, predict()
1._at : age = 20
2._at : age = 30
3._at : age = 40
4._at : age = 50
5._at : age = 60
Delta-method
Margin Std. Err. t P>t [95% Conf. Interval]
_at#female
1 0 13.3475 .6876772 19.41 0.000 11.99825 14.69675
1 1 12.91372 .662621 19.49 0.000 11.61363 14.21381
2 0 14.52538 .4378656 33.17 0.000 13.66627 15.38449
2 1 13.31758 .4603422 28.93 0.000 12.41437 14.22079
3 0 15.70325 .6102808 25.73 0.000 14.50586 16.90065
3 1 13.72144 .6281752 21.84 0.000 12.48893 14.95394
4 0 16.88113 1.007496 16.76 0.000 14.90438 18.85788
4 1 14.1253 .9935462 14.22 0.000 12.17592 16.07467
5 0 18.059 1.455866 12.40 0.000 15.20254 20.91547
5 1 14.52916 1.410498 10.30 0.000 11.7617 17.29661
. margins, dydx(female) at(age=(20(10)60))
Conditional marginal effects Number of obs = 1148
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : 1.female
1._at : age = 20
2._at : age = 30
3._at : age = 40
4._at : age = 50
5._at : age = 60
Delta-method
dy/dx Std. Err. t P>t [95% Conf. Interval]
1.female
_at
1 -.4337829 .9549693 -0.45 0.650 -2.307471 1.439905
2 -1.2078 .6353276 -1.90 0.058 -2.454338 .0387385
3 -1.981816 .875812 -2.26 0.024 -3.700194 -.2634381
4 -2.755833 1.414985 -1.95 0.052 -5.53209 .0204244
5 -3.52985 2.027079 -1.74 0.082 -7.50706 .4473607
Note: dy/dx for factor levels is the discrete change from the base level.
is the effect of age on seius different for male and female?
Related Posts with ols interactions (is the effect of age on seius different for male and female?)
Error rdplotI have a problem regarding a regression discontinuity design. I use panel data, where I have two yea…
How to Sum or add Across Column with if commandHello Fellow Statalist, I have a dataset that contains the following vatiables: Date, CIF, FOB, Cou…
Problem with summarystatistics by groupDear all, In my dataset I have 5 dummies, indicating whether a firm belongs to a specific group. I …
Estimating p-value from t-value in regression with cluster-robust standard errorsHi, I have run a regression model with cluster-robust standard errors, using the following command:…
Relative coefficientsDear All, Can someone help me to understand how to obtain coefficients relative to the absolute val…
Subscribe to:
Post Comments (Atom)
0 Response to ols interactions (is the effect of age on seius different for male and female?)
Post a Comment