I am trying to analyze the effect of this three variables (ml, mms, mic) in the outcome score. For that, I have tried cut the variable score (which is score10) and apply the command logistic. However, the variable mic is already include when I have to genarate the variable score. Therefore, my questions are:
1) Make sense use the variable mic that is already included in the previous model.
2) If I use the log values of the variables and apply regress without cut the variable the effect is different, what is the best in this case.
[CODE]
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(score score10 ml mms mic) .3 0 25.6 6122.143 . .3 0 19.6 5509.286 0 3.6 0 28.01327 5147.143 0 .7 0 22.11574 5025 0 .7 0 28.2 6150 0 3.6 0 37.449318 3859.286 0 6.5 0 28.97162 5925 0 7.6 0 24.54847 4317.857 0 .1 0 20.7 6537.857 . 7.6 0 73.35053 3544.286 0 1.1 0 29.856247 4635 1 .1 0 24.62219 6304.286 0 .3 0 14.2 6812.143 0 3.6 0 34.1 4920 . 47.4 10 41.4 7088.571 1 28.8 10 39 5631.429 0 3.6 0 52.04571 4680 0 1.6 0 10.8 5492.143 . .1 0 67.08441 5942.143 0 12.7 10 9.1 6893.571 1 1.1 0 74.53004 5010 0 1.1 0 21.2 5723.571 0 .1 0 11.573903 6465 0 7.6 0 31.6 5145 0 .1 0 49.24438 4452.857 0 1.1 0 26.3 4836.4287 0 7.6 0 97.23553 4836.4287 . 6.5 0 127.38666 5792.143 . 1.6 0 14.596388 5498.571 . 47.4 10 96.27718 4444.2856 0 47.4 10 29.6 6083.571 1
Code:
logistic score10 ml mms mic Logistic regression Number of obs = 24 LR chi2(3) = 12.98 Prob > chi2 = 0.0047 Log likelihood = -5.7902812 Pseudo R2 = 0.5285 ------------------------------------------------------------------------------ score10 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lps | 1.087406 .0461957 1.97 0.049 1.000531 1.181824 scd14 | 1.001812 .0011957 1.52 0.129 .9994716 1.004158 infebac_cul | 78.14645 165.468 2.06 0.040 1.231878 4957.363 ------------------------------------------------------------------------------ . regress score ml mms mic Source | SS df MS Number of obs = 24 -------------+------------------------------ F( 3, 20) = 5.84 Model | 2698.21218 3 899.404059 Prob > F = 0.0049 Residual | 3077.56648 20 153.878324 R-squared = 0.4672 -------------+------------------------------ Adj R-squared = 0.3872 Total | 5775.77865 23 251.120811 Root MSE = 12.405 ------------------------------------------------------------------------------ score | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lpsl | 15.0346 5.339857 2.82 0.011 3.895857 26.17335 scd14l | 24.36535 17.51601 1.39 0.179 -12.1724 60.9031 infebac_cul | 21.82136 7.222988 3.02 0.007 6.754472 36.88825 _cons | -254.8052 160.3527 -1.59 0.128 -589.2951 79.6846 ------------------------------------------------------------------------------ . regress score ml mms Source | SS df MS Number of obs = 31 -------------+------------------------------ F( 2, 28) = 2.17 Model | 813.12484 2 406.56242 Prob > F = 0.1332 Residual | 5249.63484 28 187.486959 R-squared = 0.1341 -------------+------------------------------ Adj R-squared = 0.0723 Total | 6062.75968 30 202.091989 Root MSE = 13.693 ------------------------------------------------------------------------------ score | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- lpsl | 8.534702 4.276687 2.00 0.056 -.2256938 17.2951 scd14l | 23.85516 16.56384 1.44 0.161 -10.07432 57.78464 _cons | -226.2016 149.5938 -1.51 0.142 -532.6305 80.22734 ------------------------------------------------------------------------------ . logistic score10 ml mms Logistic regression Number of obs = 31 LR chi2(2) = 3.80 Prob > chi2 = 0.1494 Log likelihood = -11.794517 Pseudo R2 = 0.1388 ------------------------------------------------------------------------------ score10 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lps | 1.017974 .0178374 1.02 0.309 .9836072 1.053542 scd14 | 1.001284 .0007506 1.71 0.087 .9998135 1.002756 ------------------------------------------------------------------------------
0 Response to multivariate analysis from a score
Post a Comment