I have some questions regarding (dis)advantages of using melogit vs logit, vce(cluster) vs xtlogit when you have multilevel data. Are there any theoretical (or practical) reasons to prefer one or the other?
I specified some alternatives (see code and results below): in this case the results are pretty robust, but in some other cases, coefficients and standard errors may be quite different according to the specification.
Code:
use http://www.stata-press.com/data/r15/bangladesh eststo clear * Basic multilevel logit melogit c_use urban age child* || district: eststo melogit * Multilevel logit with clusterd standard errors melogit c_use urban age child* || district:, vce(cluster district) eststo melogit_cl * 'Normal' logit with clustered standard errors logit c_use urban age child*, vce(cluster district) eststo logit_cl * declare panel data (xtset district) xtset district * Random intercepts logit (panel data) xtlogit c_use urban age child*, re eststo xtlogit_re * Fixed intercepts logit (panel data) xtlogit c_use urban age child*, fe eststo xtlogit_fe * Manually created fixed intercepts logit (because vce(cluster) is not possible using xtlogit, fe logit c_use urban age child* i.district eststo logit_man_fe * Manually created fixed intercepts logit with clustered s.e. (because vce(cluster) is not possible using xtlogit, fe logit c_use urban age child* i.district, vce(cluster district) eststo logit_man_fe_cl * consolidate output in 1 table esttab, mtit keep(urban age child*)
Code:
---------------------------------------------------------------------------------------------------------------------------- (1) (2) (3) (4) (5) (6) (7) melogit melogit_cl logit_cl xtlogit_re xtlogit_fe logit_man_fe logit_man_~l ---------------------------------------------------------------------------------------------------------------------------- c_use urban 0.732*** 0.732*** 0.797*** 0.732*** 0.644*** 0.662*** 0.662*** (6.13) (4.39) (4.21) (6.13) (5.12) (5.19) (3.58) age -0.0265*** -0.0265*** -0.0239*** -0.0265*** -0.0266*** -0.0274*** -0.0274*** (-3.36) (-3.70) (-3.49) (-3.36) (-3.31) (-3.36) (-3.62) child1 1.116*** 1.116*** 1.067*** 1.116*** 1.123*** 1.154*** 1.154*** (7.06) (5.73) (5.82) (7.06) (7.01) (7.10) (5.59) child2 1.366*** 1.366*** 1.276*** 1.366*** 1.359*** 1.398*** 1.398*** (7.82) (8.13) (7.51) (7.82) (7.69) (7.79) (7.91) child3 1.344*** 1.344*** 1.214*** 1.344*** 1.364*** 1.404*** 1.404*** (7.48) (6.60) (6.05) (7.48) (7.48) (7.58) (6.57) ---------------------------------------------------------------------------------------------------------------------------- N 1934 1934 1934 1934 1907 1907 1907 ---------------------------------------------------------------------------------------------------------------------------- t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001
Mike
0 Response to Multilevel data: melogit vs logit with clustered standard errors
Post a Comment