My question: Would you have an idea why my random-effects model is reporting a much lower # observations and # groups than I expect?
Some background:
- This is an unbalanced longitudinal dataset for K-8 students, where each student can have either 2 or 3 years of data. The person-unit variable is record_id (unique to each student) and the time variable is year (values: 1, 2, 3). In the long dataset, n=4581
- I ran a random-effects model assessing the longitudinal association between proportion of absences (variable name: absenty_p, it is a continuous variable) and the child's mean BMI (variable name: bmim). Although BMI is an age and gender-adjusted measure, I wanted to see if random intercepts by the grade-levels (variable name: grade, values: 0-8) are statistically significant or not. I also wanted to see if the random slopes by grade are stat sig or not. So, I ran the following model:
- RANDOM INT-ONLY: xi: xtmixed: absenty_p bmim || grade:
- RANDOM INT & RAND SLOPE: xi: tmixed: absenty_p bmim || grade: bmim
The STATA results are below:
Code:
. xi: xtmixed absenty_p2 bmim || grade: Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = 439.52204 Iteration 1: log likelihood = 439.54599 Iteration 2: log likelihood = 439.54626 Iteration 3: log likelihood = 439.54626 Computing standard errors: Mixed-effects ML regression Number of obs = 343 Group variable: grade Number of groups = 1 Obs per group: min = 343 avg = 343.0 max = 343 Wald chi2(1) = 0.04 Log likelihood = 439.54626 Prob > chi2 = 0.8378 ------------------------------------------------------------------------------ absenty_p2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- bmim | -.0001856 .0009069 -0.20 0.838 -.0019632 .0015919 _cons | .069757 .0171076 4.08 0.000 .0362267 .1032873 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ grade: Identity | sd(_cons) | 1.16e-12 2.22e-11 6.27e-29 21485.93 -----------------------------+------------------------------------------------ sd(Residual) | .0671777 .0025649 .0623341 .0723976 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 1.1e-13 Prob >= chibar2 = 1.0000 . xi: xtmixed absenty_p2 bmim || grade: bmim Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = 439.48383 Iteration 1: log likelihood = 439.54043 Iteration 2: log likelihood = 439.54626 Iteration 3: log likelihood = 439.54626 Computing standard errors: Mixed-effects ML regression Number of obs = 343 Group variable: grade Number of groups = 1 Obs per group: min = 343 avg = 343.0 max = 343 Wald chi2(1) = 0.04 Log likelihood = 439.54626 Prob > chi2 = 0.8378 ------------------------------------------------------------------------------ absenty_p2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- bmim | -.0001856 .0009069 -0.20 0.838 -.0019632 .0015919 _cons | .069757 .0171076 4.08 0.000 .0362267 .1032873 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ grade: Independent | sd(bmim) | 3.37e-12 5.55e-09 0 . sd(_cons) | 6.20e-11 1.41e-07 0 . -----------------------------+------------------------------------------------ sd(Residual) | .0671777 .0025649 .0623341 .0723976 ------------------------------------------------------------------------------ LR test vs. linear model: chi2(2) = 1.1e-13 Prob > chi2 = 1.0000 Note: LR test is conservative and provided only for reference.
0 Response to Troubleshooting a random-intercept model
Post a Comment