I am doing a FE and RE Regression and I am not sure if I should use Time Dummies (i.date) or a linear time trend (c.date).
Code:
xtreg BEVsalesshare2 $varying $invariant i.date, fe vce(cluster county) Fixed-effects (within) regression Number of obs = 1,296 Group variable: county Number of groups = 18 R-sq: Obs per group: within = 0.8461 min = 72 between = 0.5139 avg = 72.0 overall = 0.4984 max = 72 F(20,17) = . corr(u_i, Xb) = -0.8236 Prob > F = . (Std. Err. adjusted for 18 clusters in county) ------------------------------------------------------------------------------ | Robust BEVsalessh~2 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- HOVkm | .0035468 .0009032 3.93 0.001 .0016412 .0054524 NTPKM | 1.457356 .5944069 2.45 0.025 .2032672 2.711445 NFPKM | -.0001876 .0002327 -0.81 0.431 -.0006786 .0003034 lCHRoadKm | .0003344 .0001517 2.20 0.042 .0000143 .0006546 DGPrice | 1.457764 1.039166 1.40 0.179 -.7346851 3.650213 EnergyPrice | .0000216 .0000378 0.57 0.575 -.0000582 .0001015 Arbeitslos | .0156132 .0080518 1.94 0.069 -.0013746 .0326009 AVKT | .000037 .0000282 1.31 0.207 -.0000225 .0000966 Einkommen | 7.03e-07 9.98e-07 0.70 0.491 -1.40e-06 2.81e-06 KuestenKm | 0 (omitted) MuMShare | 0 (omitted) Temp | 0 (omitted) | date | 613 | -.2939739 .2121634 -1.39 0.184 -.7415996 .1536518 614 | -.9261776 .6646269 -1.39 0.181 -2.328418 .4760626 615 | -1.207906 .861059 -1.40 0.179 -3.024582 .6087697 616 | -.9949058 .710164 -1.40 0.179 -2.493221 .5034093 617 | -1.020068 .7257672 -1.41 0.178 -2.551303 .5111668 618 | -1.027555 .7295912 -1.41 0.177 -2.566858 .5117477 619 | -.8171673 .5847958 -1.40 0.180 -2.050979 .4166441 620 | -.6837897 .4917226 -1.39 0.182 -1.721234 .3536543 621 | -.6799051 .4899869 -1.39 0.183 -1.713687 .3538769 622 | -.7046242 .5125549 -1.37 0.187 -1.78602 .3767721 623 | -.6535136 .470383 -1.39 0.183 -1.645935 .3389078 624 | -1.313945 .9263289 -1.42 0.174 -3.268328 .640438 625 | -1.623553 1.146794 -1.42 0.175 -4.043077 .7959706 626 | -1.858993 1.315581 -1.41 0.176 -4.634626 .9166396 627 | -2.22194 1.575141 -1.41 0.176 -5.545197 1.101316 628 | -1.514201 1.070677 -1.41 0.175 -3.773132 .7447305 629 | -1.019642 .7174562 -1.42 0.173 -2.533342 .4940579 630 | -.9345289 .6548755 -1.43 0.172 -2.316195 .4471376 631 | -1.403574 .9984869 -1.41 0.178 -3.510197 .7030493 632 | -1.823847 1.306 -1.40 0.181 -4.579265 .9315715 633 | -1.473502 1.045445 -1.41 0.177 -3.679199 .7321946 634 | -.9520076 .6716685 -1.42 0.174 -2.369104 .465089 635 | -.7893453 .5522139 -1.43 0.171 -1.954415 .3757241 636 | -1.031465 .7057578 -1.46 0.162 -2.520484 .4575538 637 | -1.326484 .9191686 -1.44 0.167 -3.26576 .6127924 638 | -1.241148 .8566794 -1.45 0.166 -3.048584 .5662872 639 | -.8768857 .5970589 -1.47 0.160 -2.13657 .3827985 640 | -1.009364 .690045 -1.46 0.162 -2.465231 .446504 641 | -1.062054 .7318846 -1.45 0.165 -2.606196 .4820875 642 | -1.513326 1.047113 -1.45 0.167 -3.72254 .6958884 643 | -1.677617 1.184271 -1.42 0.175 -4.176211 .8209776 644 | -1.772249 1.263255 -1.40 0.179 -4.437484 .8929865 645 | -1.589766 1.12864 -1.41 0.177 -3.970989 .7914568 646 | -1.313958 .9574884 -1.37 0.188 -3.334082 .706166 647 | -1.38575 1.006986 -1.38 0.187 -3.510305 .7388046 648 | -1.681797 1.192454 -1.41 0.176 -4.197656 .8340617 649 | -1.570769 1.127175 -1.39 0.181 -3.9489 .8073629 650 | -1.249355 .9409421 -1.33 0.202 -3.23457 .7358591 651 | -1.152704 .8185926 -1.41 0.177 -2.879784 .5743752 652 | -1.534667 1.093846 -1.40 0.179 -3.84248 .7731458 653 | -1.360255 .979134 -1.39 0.183 -3.426047 .7055375 654 | -1.759904 1.262651 -1.39 0.181 -4.423864 .9040554 655 | -1.617958 1.178995 -1.37 0.188 -4.105421 .8695047 656 | -1.393409 .9957378 -1.40 0.180 -3.494232 .7074141 657 | -.9588679 .6830983 -1.40 0.178 -2.400079 .4823435 658 | -.9905187 .7153963 -1.38 0.184 -2.499873 .5188354 659 | -.1240522 .0973825 -1.27 0.220 -.3295112 .0814069 660 | -.0512563 .0597748 -0.86 0.403 -.17737 .0748574 661 | .3494894 .2271063 1.54 0.142 -.1296629 .8286418 662 | -.1340338 .1525497 -0.88 0.392 -.4558856 .187818 663 | -.5874017 .4276434 -1.37 0.187 -1.48965 .314847 664 | .0913795 .0551258 1.66 0.116 -.0249259 .2076848 665 | -.8334221 .621054 -1.34 0.197 -2.143732 .4768874 666 | -1.008883 .7212533 -1.40 0.180 -2.530595 .512828 667 | .1646014 .0987002 1.67 0.114 -.0436379 .3728406 668 | .3036344 .1969627 1.54 0.142 -.1119206 .7191894 669 | .4383204 .3030653 1.45 0.166 -.2010915 1.077732 670 | .4428938 .3001054 1.48 0.158 -.1902732 1.076061 671 | .806903 .5671724 1.42 0.173 -.3897263 2.003532 672 | .9135457 .6428917 1.42 0.173 -.4428371 2.269929 673 | 1.648068 1.173547 1.40 0.178 -.8279002 4.124037 674 | .6626571 .4521357 1.47 0.161 -.2912657 1.61658 675 | .8644334 .6236019 1.39 0.184 -.4512516 2.180118 676 | .95344 .708503 1.35 0.196 -.5413708 2.448251 677 | .1065229 .0872987 1.22 0.239 -.0776612 .2907069 678 | .0950838 .1061755 0.90 0.383 -.1289269 .3190944 679 | .630049 .4534669 1.39 0.183 -.3266824 1.58678 680 | .8275755 .573103 1.44 0.167 -.3815662 2.036717 681 | .9732132 .7018173 1.39 0.183 -.5074919 2.453918 682 | .3737313 .2477754 1.51 0.150 -.1490292 .8964918 683 | 0 (omitted) | _cons | -19.84632 13.11662 -1.51 0.149 -47.51997 7.827334 -------------+---------------------------------------------------------------- sigma_u | .08053934 sigma_e | .02521736 rho | .91071741 (fraction of variance due to u_i) ------------------------------------------------------------------------------
What does this mean?
Is the joint test result still significant and I should therefore use Time dummies instead of a Time Trend?
Code:
. testparm i.date ( 1) 613.date = 0 ( 2) 614.date = 0 ( 3) 615.date = 0 ( 4) 616.date = 0 ( 5) 617.date = 0 ( 6) 618.date = 0 ( 7) 619.date = 0 ( 8) 620.date = 0 ( 9) 621.date = 0 (10) 622.date = 0 (11) 623.date = 0 (12) 624.date = 0 (13) 625.date = 0 (14) 626.date = 0 (15) 627.date = 0 (16) 628.date = 0 (17) 629.date = 0 (18) 630.date = 0 (19) 631.date = 0 (20) 632.date = 0 (21) 633.date = 0 (22) 634.date = 0 (23) 635.date = 0 (24) 636.date = 0 (25) 637.date = 0 (26) 638.date = 0 (27) 639.date = 0 (28) 640.date = 0 (29) 641.date = 0 (30) 642.date = 0 (31) 643.date = 0 (32) 644.date = 0 (33) 645.date = 0 (34) 646.date = 0 (35) 647.date = 0 (36) 648.date = 0 (37) 649.date = 0 (38) 650.date = 0 (39) 651.date = 0 (40) 652.date = 0 (41) 653.date = 0 (42) 654.date = 0 (43) 655.date = 0 (44) 656.date = 0 (45) 657.date = 0 (46) 658.date = 0 (47) 659.date = 0 (48) 660.date = 0 (49) 661.date = 0 (50) 662.date = 0 (51) 663.date = 0 (52) 664.date = 0 (53) 665.date = 0 (54) 666.date = 0 (55) 667.date = 0 (56) 668.date = 0 (57) 669.date = 0 (58) 670.date = 0 (59) 671.date = 0 (60) 672.date = 0 (61) 673.date = 0 (62) 674.date = 0 (63) 675.date = 0 (64) 676.date = 0 (65) 677.date = 0 (66) 678.date = 0 (67) 679.date = 0 (68) 680.date = 0 (69) 681.date = 0 (70) 682.date = 0 Constraint 1 dropped Constraint 2 dropped Constraint 3 dropped Constraint 4 dropped Constraint 5 dropped Constraint 6 dropped Constraint 7 dropped Constraint 8 dropped Constraint 10 dropped Constraint 11 dropped Constraint 12 dropped Constraint 13 dropped Constraint 14 dropped Constraint 16 dropped Constraint 17 dropped Constraint 18 dropped Constraint 19 dropped Constraint 20 dropped Constraint 21 dropped Constraint 22 dropped Constraint 23 dropped Constraint 24 dropped Constraint 25 dropped Constraint 26 dropped Constraint 27 dropped Constraint 28 dropped Constraint 29 dropped Constraint 30 dropped Constraint 31 dropped Constraint 32 dropped Constraint 34 dropped Constraint 35 dropped Constraint 36 dropped Constraint 37 dropped Constraint 39 dropped Constraint 40 dropped Constraint 41 dropped Constraint 45 dropped Constraint 47 dropped Constraint 54 dropped Constraint 55 dropped Constraint 56 dropped Constraint 57 dropped Constraint 58 dropped Constraint 59 dropped Constraint 62 dropped Constraint 63 dropped Constraint 64 dropped Constraint 66 dropped Constraint 69 dropped F( 20, 17) = 3.5e+06 Prob > F = 0.0000
Thanks a lot for your help

Cheers
Alex
0 Response to Test for significance of Time Dummies
Post a Comment