I'm interested in running a probability model but I have some questions regarding with the models itself and the control variables. Before the questions about the model, here's a section of my data set:
Code:
1996 1 1 -.3275632 1997 1 1 -.37988619 1998 1 1 -.35953836 1999 1 0 -.38094193 2000 1 1 -.2752674 2001 1 0 -.3891454 2002 1 1 -.4167883 2003 1 1 -.18402586 2004 1 1 -.32373861 2005 1 0 -.26459956 2006 1 0 -.24347964 2007 1 1 -.22100002 2008 1 1 -.30709973 2009 1 0 -.29539555 2010 1 0 -.39313385 2011 1 0 -.36766358 2012 1 0 -.37702698 2013 1 0 -.44015804 2014 1 0 -.24885774 2015 1 0 -.31083205 2016 1 0 -.27822521 2017 1 0 -.22154936 1995 2 0 .07744394 1996 2 1 .03747911 1997 2 0 -.13627645 1998 2 0 .15022897 1999 2 0 .05101566 2000 2 0 .05925428
First, second, third, and fourth columns show the years, companies, binary dependent variable, and the continuous independent variable (leveragedeficit in the following tables), respectively.
With a data set like that, I need to use -xtprobit- or -xtlogit- instead of only -probit- or -logit-, right?
I followed following steps:
Code:
. xtset CompanyNo BaseYear panel variable: CompanyNo (unbalanced) time variable: BaseYear, 1995 to 2017, but with gaps delta: 1 unit
Code:
xtprobit AcquirerStatus LeverageDeficit Size Markettobook Profitability i.BaseYear Fitting comparison model: Iteration 0: log likelihood = -703.83892 Iteration 1: log likelihood = -668.72656 Iteration 2: log likelihood = -667.89193 Iteration 3: log likelihood = -667.88916 Iteration 4: log likelihood = -667.88916 Fitting full model: rho = 0.0 log likelihood = -667.88916 rho = 0.1 log likelihood = -659.08637 rho = 0.2 log likelihood = -660.71391 Iteration 0: log likelihood = -659.08647 Iteration 1: log likelihood = -656.04543 Iteration 2: log likelihood = -655.8358 Iteration 3: log likelihood = -655.83545 Iteration 4: log likelihood = -655.83545 Random-effects probit regression Number of obs = 2,554 Group variable: CompanyNo Number of groups = 248 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 10.3 max = 23 Integration method: mvaghermite Integration pts. = 12 Wald chi2(26) = 42.88 Log likelihood = -655.83545 Prob > chi2 = 0.0199 --------------------------------------------------------------------------------- AcquirerStatus | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------+---------------------------------------------------------------- LeverageDeficit | -.4894872 .2504744 -1.95 0.051 -.980408 .0014337 Size | .2125652 .0846811 2.51 0.012 .0465932 .3785371 Markettobook | .0508144 .0591066 0.86 0.390 -.0650325 .1666613 Profitability | .3614916 .5259731 0.69 0.492 -.6693968 1.39238 | BaseYear | 1996 | -.0196722 .3486411 -0.06 0.955 -.7029962 .6636518 1997 | -.1248034 .3488386 -0.36 0.721 -.8085145 .5589076 1998 | .0540659 .3247021 0.17 0.868 -.5823385 .6904703 1999 | .3028502 .3145904 0.96 0.336 -.3137356 .919436 2000 | -.4904255 .3670268 -1.34 0.181 -1.209785 .2289339 2001 | -.1871212 .3393259 -0.55 0.581 -.8521878 .4779454 2002 | -.1044416 .3337692 -0.31 0.754 -.7586173 .5497341 2003 | .0790474 .3210148 0.25 0.805 -.55013 .7082248 2004 | -.1749998 .3335653 -0.52 0.600 -.8287758 .4787761 2005 | -.1767613 .3258052 -0.54 0.587 -.8153278 .4618051 2006 | -.1462115 .3139424 -0.47 0.641 -.7615273 .4691043 2007 | .0661997 .3027836 0.22 0.827 -.5272452 .6596446 2008 | -.7384657 .3527952 -2.09 0.036 -1.429932 -.0469998 2009 | -.0535747 .3010514 -0.18 0.859 -.6436246 .5364752 2010 | -.3910161 .3195727 -1.22 0.221 -1.017367 .2353349 2011 | -.0690389 .2992925 -0.23 0.818 -.6556415 .5175637 2012 | -.485205 .3220254 -1.51 0.132 -1.116363 .1459532 2013 | -.3406325 .3115639 -1.09 0.274 -.9512865 .2700215 2014 | -.3151666 .310039 -1.02 0.309 -.9228319 .2924987 2015 | -.1495515 .3018954 -0.50 0.620 -.7412556 .4421526 2016 | -.0080481 .300264 -0.03 0.979 -.5965547 .5804585 2017 | -.5602969 .3589999 -1.56 0.119 -1.263924 .1433299 | _cons | -3.327422 .783768 -4.25 0.000 -4.863579 -1.791265 ----------------+---------------------------------------------------------------- /lnsig2u | -1.586501 .3264732 -2.226377 -.9466255 ----------------+---------------------------------------------------------------- sigma_u | .4523719 .0738437 .3285099 .6229352 rho | .1698767 .0460388 .0974067 .279564 --------------------------------------------------------------------------------- LR test of rho=0: chibar2(01) = 24.11 Prob >= chibar2 = 0.000
As you can see from the result table, I don't have a Pseudo R2. Is it because of something I did wrong?
Finally, I wanted to see the marginal effects and typed
Code:
margins LeverageDeficit
Code:
LeverageDeficit: factor variables may not contain noninteger values r(452);
Sorry for the long post and lots of questions.
Thanks!
0 Response to Panel Probit/Logit Regression and time dummies- What to use?
Post a Comment