I am having trouble diagnosing a collinearity problem. Observations in my dataset are counties across years, ranging from 1996 to 2006. I am running a regression with county fixed effects. Intent, defier, m0, m1, m2 and m3 are binary variables and running is an integer that ranges from 0 to a 100.
-areg- drops some of the variables due to collinearity:
Code:
* areg drops variables # delimit ; areg ${outcome} 1.intent#0.defier#1.m0 l1.1.intent#l1.0.defier#1.m1 l2.1.intent#l2.0.defier#1.m2 l3.1.intent#l3.0.defier#1.m3 c.running#0.defier#1.m0 l1.c.running#l1.0.defier#1.m1 l2.c.running#l2.0.defier#1.m2 l3.c.running#l3.0.defier#1.m3 0.defier#m0 0.l1.defier#m1 0.l2.defier#m2 0.l3.defier#m3 if inrange(year,1996,2006) & insample , cluster(cty) absorb(cty); # delimit cr note: 0L2.defier#1.m2#cL2.running omitted because of collinearity note: 0L3.defier#1.m3#cL3.running omitted because of collinearity Linear regression, absorbing indicators Number of obs = 1,100 F( 10, 99) = 11.86 Prob > F = 0.0000 R-squared = 0.5210 Adj R-squared = 0.4683 Root MSE = 1.4812 (Std. Err. adjusted for 100 clusters in cty) ------------------------------------------------------------------------------------- | Robust unemp_rate | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------------+---------------------------------------------------------------- intent#defier#m0 | 1 0 1 | -.9089798 .678034 -1.34 0.183 -2.254346 .4363869 | L.intent#L.defier#| m1 | 1 0 1 | -1.139256 .6345052 -1.80 0.076 -2.398252 .1197395 | L2. | intent#| L2.defier#m2 | 1 0 1 | -1.0513 .492405 -2.14 0.035 -2.028339 -.0742618 | L3. | intent#| L3.defier#m3 | 1 0 1 | -1.969312 1.007312 -1.96 0.053 -3.968037 .0294126 | defier#m0#c.running | 0 1 | -.0625051 .0289846 -2.16 0.033 -.1200169 -.0049933 | L.defier#m1#| cL.running | 0 1 | -.0364417 .0252344 -1.44 0.152 -.0865122 .0136287 | L2.defier#m2#| cL2.running | 0 1 | 0 (omitted) | L3.defier#m3#| cL3.running | 0 1 | 0 (omitted) | defier#m0 | 0 1 | -.0751216 .3238042 -0.23 0.817 -.7176194 .5673762 | L.defier#m1 | 0 1 | .0497029 .2771395 0.18 0.858 -.5002019 .5996077 | L2.defier#m2 | 0 1 | .4190932 .2787426 1.50 0.136 -.1339925 .9721789 | L3.defier#m3 | 0 1 | 1.926908 .5189397 3.71 0.000 .8972196 2.956597 | _cons | 6.062341 .4269764 14.20 0.000 5.215127 6.909555 --------------------+---------------------------------------------------------------- cty | absorbed (100 categories)
Code:
* areg doesn't drop variables if post 1999 # delimit ; areg ${outcome} 1.intent#0.defier#1.m0 l1.1.intent#l1.0.defier#1.m1 l2.1.intent#l2.0.defier#1.m2 l3.1.intent#l3.0.defier#1.m3 c.running#0.defier#1.m0 l1.c.running#l1.0.defier#1.m1 l2.c.running#l2.0.defier#1.m2 l3.c.running#l3.0.defier#1.m3 0.defier#m0 0.l1.defier#m1 0.l2.defier#m2 0.l3.defier#m3 if inrange(year,2000,2006) & insample , cluster(cty) absorb(cty); # delimit cr Linear regression, absorbing indicators Number of obs = 700 F( 12, 99) = 6.15 Prob > F = 0.0000 R-squared = 0.6168 Adj R-squared = 0.5444 Root MSE = 1.1326 (Std. Err. adjusted for 100 clusters in cty) ------------------------------------------------------------------------------------- | Robust unemp_rate | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------------+---------------------------------------------------------------- intent#defier#m0 | 1 0 1 | .4648492 .3104504 1.50 0.137 -.1511518 1.08085 | L.intent#L.defier#| m1 | 1 0 1 | -.0860283 .2276794 -0.38 0.706 -.5377936 .3657371 | L2. | intent#| L2.defier#m2 | 1 0 1 | -.1695172 .3319051 -0.51 0.611 -.828089 .4890546 | L3. | intent#| L3.defier#m3 | 1 0 1 | .226809 .4802937 0.47 0.638 -.7261979 1.179816 | defier#m0#c.running | 0 1 | -.0109445 .0076418 -1.43 0.155 -.0261074 .0042184 | L.defier#m1#| cL.running | 0 1 | .0101195 .0064702 1.56 0.121 -.0027188 .0229577 | L2.defier#m2#| cL2.running | 0 1 | .0129306 .0083487 1.55 0.125 -.003635 .0294962 | L3.defier#m3#| cL3.running | 0 1 | -.0003409 .0113759 -0.03 0.976 -.0229131 .0222313 | defier#m0 | 0 1 | -.5470303 .3260741 -1.68 0.097 -1.194032 .0999715 | L.defier#m1 | 0 1 | -.4926713 .2377283 -2.07 0.041 -.9643758 -.0209669 | L2.defier#m2 | 0 1 | -.0659969 .2842434 -0.23 0.817 -.6299975 .4980037 | L3.defier#m3 | 0 1 | .023994 .2798196 0.09 0.932 -.5312288 .5792167 | _cons | 6.464826 .2387412 27.08 0.000 5.991112 6.93854 --------------------+---------------------------------------------------------------- cty | absorbed (100 categories)
Code:
* reghdfe doesn't drop variables # delimit ; reghdfe ${outcome} 1.intent#0.defier#1.m0 l1.1.intent#l1.0.defier#1.m1 l2.1.intent#l2.0.defier#1.m2 l3.1.intent#l3.0.defier#1.m3 c.running#0.defier#1.m0 l1.c.running#l1.0.defier#1.m1 l2.c.running#l2.0.defier#1.m2 l3.c.running#l3.0.defier#1.m3 0.defier#m0 0.l1.defier#m1 0.l2.defier#m2 0.l3.defier#m3 if inrange(year,1996,2006) & insample , cluster(cty) absorb(cty); # delimit cr (converged in 1 iterations) HDFE Linear regression Number of obs = 1,100 Absorbing 1 HDFE group F( 12, 99) = 22.41 Statistics robust to heteroskedasticity Prob > F = 0.0000 R-squared = 0.6201 Adj R-squared = 0.5774 Within R-sq. = 0.1373 Number of clusters (cty) = 100 Root MSE = 1.3204 (Std. Err. adjusted for 100 clusters in cty) ------------------------------------------------------------------------------------- | Robust unemp_rate | Coef. Std. Err. t P>|t| [95% Conf. Interval] --------------------+---------------------------------------------------------------- intent#defier#m0 | 1 0 1 | .0634621 .2583711 0.25 0.806 -.4492021 .5761264 | L.intent#L.defier#| m1 | 1 0 1 | -.0027516 .1981444 -0.01 0.989 -.3959132 .3904099 | L2. | intent#| L2.defier#m2 | 1 0 1 | -.2087028 .2232519 -0.93 0.352 -.651683 .2342773 | L3. | intent#| L3.defier#m3 | 1 0 1 | .1684336 .2454237 0.69 0.494 -.3185403 .6554075 | defier#m0#c.running | 0 1 | -.016822 .0066538 -2.53 0.013 -.0300245 -.0036195 | L.defier#m1#| cL.running | 0 1 | .0023001 .0047169 0.49 0.627 -.0070593 .0116596 | L2.defier#m2#| cL2.running | 0 1 | .0021448 .0048294 0.44 0.658 -.0074377 .0117274 | L3.defier#m3#| cL3.running | 0 1 | .0171726 .0048115 3.57 0.001 .0076255 .0267197 | defier#m0 | 0 1 | -.2761202 .2393532 -1.15 0.251 -.7510489 .1988084 | L.defier#m1 | 0 1 | -.453506 .149009 -3.04 0.003 -.7491721 -.1578398 | L2.defier#m2 | 0 1 | -.0499182 .1498133 -0.33 0.740 -.3471802 .2473439 | L3.defier#m3 | 0 1 | .8106551 .1642063 4.94 0.000 .4848342 1.136476 ------------------------------------------------------------------------------------- Absorbed degrees of freedom: ----------------------------------------------------------------------+ Absorbed FE | Num. Coefs. = Categories - Redundant | --------------------+-------------------------------------------------| cty | 0 100 100 * | ----------------------------------------------------------------------+ * = fixed effect nested within cluster; treated as redundant for DoF computation
Thank you.
0 Response to Collinearity issues with -areg- and not with -reghdfe-
Post a Comment