Code:
*** Run multinomial Logistic Regression by Co-occurring Disorder *** foreach var of varlist alchl_flag tbcco_flag cnnbs_flag hllgn_flag inhlnts_flag /// sha_flag stmlnts_ccne_flag stmlnts_othr_flag mh_dsrdr_anxty mh_dsrdr_adhd mh_dsrdr_atsm /// mh_dsrdr_bplr mh_dsrdr_dprssn mh_dsrdr_intllctl mh_dsrdr_prsnlty mh_dsrdr_ptsd mh_dsrdr_schz { mlogit cat_misuse5 i.(`var' male race_ethnic mrtl_stus_cd vet_ind ctznshp_ind) age, rrr nolog }
Running the models on the raw data and requesting relative risk ratios produces meaningful coefficients for each predictor (i.e., all values greater than 0). However because several of the predictors had a large number of missing values (race_ethnic missing = 38,880/1,102,479; marital status = 137,727/1,102,479), I decided to run multiple imputation and then rerun the mlogit models with the imputed values to compare with the non-imputed models:
Code:
*** Rerun using multiple imputation to impute race/ethnicity and marital status *** mi set flong mi register imputed race_ethnic mrtl_stus mi register regular cat_misuse5 age alchl_flag tbcco_flag cnnbs_flag /// mh_dsrdr_bplr stmlnts_ccne_flag mh_dsrdr_dprssn mh_dsrdr_anxty /// mh_dsrdr_schz mh_dsrdr_ptsd mi impute chained (mlogit) race_ethnic mrtl_stus = i.(cat_misuse5 alchl_flag tbcco_flag cnnbs_flag /// stmlnts_ccne_flag mh_dsrdr_bplr mh_dsrdr_dprssn mh_dsrdr_anxty /// mh_dsrdr_schz mh_dsrdr_ptsd) c.age, add(5) mi estimate: mlogit cat_misuse5 i.(alchl_flag male race_ethnic mrtl_stus vet_ind ctznshp_ind) age, rrr nolog
Any help would be much appreciated.
0 Response to Mlogit with Multiple Imputation Produces Relative Risk Ratios with Negative Values
Post a Comment