1) I am leaning toward using the tabulate results for the CIs, as some of the CIs using the "proportion" option are negative. Thoughts?
2) Are there other ways of calculating the 90% CIs in Stata for survey proportions that I should consider here?
3) Are there any good applied research studies with good examples of how to present the proportions and SEs or 90% CIs? (tables or graphs) - maybe not a Stata question.
thanks in advance for any advice!
Code:
. svyset [pw = WTSURVY], jkrw(RW0001- RW0320, multiplier(0.05)) vce(jack) mse pweight: WTSURVY VCE: jackknife MSE: on jkrweight: RW0001 .. RW0320 Single unit: missing Strata 1: <one> SU 1: <observations> FPC 1: <zero> . svy: proportion RACETHM_n, over(career_stage_rev2 DGRDG_n) level(90) (running proportion on estimation sample) Jackknife replications (320) ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 .................................................. 100 .................................................. 150 .................................................. 200 .................................................. 250 .................................................. 300 .................... Survey: Proportion estimation Number of strata = 1 Number of obs = 1,311 Population size = 252,142.35 Replications = 320 Design df = 319 AsianNHOPI: RACETHM_n = AsianNHOPI AIAN: RACETHM_n = AIAN Black: RACETHM_n = Black Hispanic: RACETHM_n = Hispanic White: RACETHM_n = White MR: RACETHM_n = MR Over: career_stage_rev2 DGRDG_n _subpop_1: 20 or more years Bachelors _subpop_2: 20 or more years Masters _subpop_3: 20 or more years Doctorate _subpop_4: 20 or more years Professional _subpop_5: Less than 20 yrs Bachelors _subpop_6: Less than 20 yrs Masters _subpop_7: Less than 20 yrs Doctorate _subpop_8: Less than 20 yrs Professional -------------------------------------------------------------- | Jknife *N ormal Over | Proportion Std. Err. [90% Conf. Interval] -------------+------------------------------------------------ AsianNHOPI | _subpop_1 | .0232649 .0103291 .0062255 .0403043 _subpop_2 | .0101458 .0081955 -.0033739 .0236655 _subpop_3 | .0861882 .0234436 .0475145 .1248618 _subpop_4 | 0 (no observations) _subpop_5 | .1010706 .025582 .0588694 .1432719 _subpop_6 | .1334251 .0323168 .0801139 .1867364 _subpop_7 | .2483284 .043813 .1760524 .3206043 _subpop_8 | 0 (no observations) -------------+------------------------------------------------ AIAN | _subpop_1 | 0 (no observations) _subpop_2 | .022717 .0171829 -.0056286 .0510626 _subpop_3 | 0 (no observations) _subpop_4 | 0 (no observations) _subpop_5 | .000104 .000122 -.0000973 .0003053 _subpop_6 | .0080136 .005543 -.0011304 .0171576 _subpop_7 | 0 (no observations) _subpop_8 | 0 (no observations) -------------+------------------------------------------------ Black | _subpop_1 | .0325514 .0203369 -.0009974 .0661001 _subpop_2 | .0865779 .0572381 -.0078446 .1810005 _subpop_3 | .0072528 .0054652 -.0017628 .0162684 _subpop_4 | 0 (no observations) _subpop_5 | .0464535 .0292895 -.0018638 .0947708 _subpop_6 | .0848761 .0471426 .0071076 .1626445 _subpop_7 | .0030085 .0018134 .000017 .006 _subpop_8 | 0 (no observations) -------------+------------------------------------------------ Hispanic | _subpop_1 | .0366649 .0248132 -.0042681 .0775978 _subpop_2 | .0493453 .0213093 .0141927 .084498 _subpop_3 | .0232171 .0143399 -.0004386 .0468728 _subpop_4 | 0 (no observations) _subpop_5 | .0834066 .0350203 .0256355 .1411777 _subpop_6 | .0727584 .0242182 .032807 .1127099 _subpop_7 | .0743311 .0250366 .0330296 .1156325 _subpop_8 | .2790089 .2699777 -.1663584 .7243761 -------------+------------------------------------------------ White | _subpop_1 | .8807481 .043279 .809353 .9521431 _subpop_2 | .8079233 .0656598 .699608 .9162386 _subpop_3 | .880132 .0284381 .8332192 .9270448 _subpop_4 | 1 . . . _subpop_5 | .7615289 .0511107 .6772145 .8458433 _subpop_6 | .6686341 .0495443 .5869037 .7503645 _subpop_7 | .6694451 .0474141 .5912287 .7476614 _subpop_8 | .2771716 .2752663 -.1769198 .731263 -------------+------------------------------------------------ MR | _subpop_1 | .0267708 .0221536 -.0097747 .0633164 _subpop_2 | .0232907 .0153762 -.0020746 .048656 _subpop_3 | .0032099 .0024432 -.0008206 .0072404 _subpop_4 | 0 (no observations) _subpop_5 | .0074364 .0028953 .0026601 .0122126 _subpop_6 | .0322927 .0186794 .0014783 .063107 _subpop_7 | .004887 .003178 -.0003555 .0101295 _subpop_8 | .4438195 .2456526 .0385802 .8490589 -------------------------------------------------------------- . . svy, subpop(if career_stage_rev2==2 & DGRDG_n==3): tabulate RACETHM_n, se ci level(90) (running tabulate on estimation sample) Number of strata = 1 Number of obs = 1,311 Population size = 252,142.35 Subpop. no. obs = 241 Subpop. size = 43,459.37 Replications = 320 Design df = 319 ---------------------------------------------------------- RACETHM_n | proportion se lb ub ----------+----------------------------------------------- AsianNHO | .2483 .0438 .1832 .3273 AIAN | 0 0 Black | .003 .0018 .0011 .0081 Hispanic | .0743 .025 .0422 .1277 White | .6694 .0474 .5872 .7425 MR | .0049 .0032 .0017 .0142 | Total | 1 ---------------------------------------------------------- Key: proportion = cell proportion se = jackknife standard error of cell proportion lb = lower 90% confidence bound for cell proportion ub = upper 90% confidence bound for cell proportion Table contains a zero in the marginals. Statistics cannot be computed.
0 Response to survey data - 90% CIs for a proportion - tabulate or proportion?
Post a Comment