1) I am leaning toward using the tabulate results for the CIs, as some of the CIs using the "proportion" option are negative. Thoughts?
2) Are there other ways of calculating the 90% CIs in Stata for survey proportions that I should consider here?
3) Are there any good applied research studies with good examples of how to present the proportions and SEs or 90% CIs? (tables or graphs) - maybe not a Stata question.
thanks in advance for any advice!
Code:
. svyset [pw = WTSURVY], jkrw(RW0001- RW0320, multiplier(0.05)) vce(jack) mse
pweight: WTSURVY
VCE: jackknife
MSE: on
jkrweight: RW0001 .. RW0320
Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>
. svy: proportion RACETHM_n, over(career_stage_rev2 DGRDG_n) level(90)
(running proportion on estimation sample)
Jackknife replications (320)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
....................
Survey: Proportion estimation
Number of strata = 1 Number of obs = 1,311
Population size = 252,142.35
Replications = 320
Design df = 319
AsianNHOPI: RACETHM_n = AsianNHOPI
AIAN: RACETHM_n = AIAN
Black: RACETHM_n = Black
Hispanic: RACETHM_n = Hispanic
White: RACETHM_n = White
MR: RACETHM_n = MR
Over: career_stage_rev2 DGRDG_n
_subpop_1: 20 or more years Bachelors
_subpop_2: 20 or more years Masters
_subpop_3: 20 or more years Doctorate
_subpop_4: 20 or more years Professional
_subpop_5: Less than 20 yrs Bachelors
_subpop_6: Less than 20 yrs Masters
_subpop_7: Less than 20 yrs Doctorate
_subpop_8: Less than 20 yrs Professional
--------------------------------------------------------------
| Jknife *N ormal
Over | Proportion Std. Err. [90% Conf. Interval]
-------------+------------------------------------------------
AsianNHOPI |
_subpop_1 | .0232649 .0103291 .0062255 .0403043
_subpop_2 | .0101458 .0081955 -.0033739 .0236655
_subpop_3 | .0861882 .0234436 .0475145 .1248618
_subpop_4 | 0 (no observations)
_subpop_5 | .1010706 .025582 .0588694 .1432719
_subpop_6 | .1334251 .0323168 .0801139 .1867364
_subpop_7 | .2483284 .043813 .1760524 .3206043
_subpop_8 | 0 (no observations)
-------------+------------------------------------------------
AIAN |
_subpop_1 | 0 (no observations)
_subpop_2 | .022717 .0171829 -.0056286 .0510626
_subpop_3 | 0 (no observations)
_subpop_4 | 0 (no observations)
_subpop_5 | .000104 .000122 -.0000973 .0003053
_subpop_6 | .0080136 .005543 -.0011304 .0171576
_subpop_7 | 0 (no observations)
_subpop_8 | 0 (no observations)
-------------+------------------------------------------------
Black |
_subpop_1 | .0325514 .0203369 -.0009974 .0661001
_subpop_2 | .0865779 .0572381 -.0078446 .1810005
_subpop_3 | .0072528 .0054652 -.0017628 .0162684
_subpop_4 | 0 (no observations)
_subpop_5 | .0464535 .0292895 -.0018638 .0947708
_subpop_6 | .0848761 .0471426 .0071076 .1626445
_subpop_7 | .0030085 .0018134 .000017 .006
_subpop_8 | 0 (no observations)
-------------+------------------------------------------------
Hispanic |
_subpop_1 | .0366649 .0248132 -.0042681 .0775978
_subpop_2 | .0493453 .0213093 .0141927 .084498
_subpop_3 | .0232171 .0143399 -.0004386 .0468728
_subpop_4 | 0 (no observations)
_subpop_5 | .0834066 .0350203 .0256355 .1411777
_subpop_6 | .0727584 .0242182 .032807 .1127099
_subpop_7 | .0743311 .0250366 .0330296 .1156325
_subpop_8 | .2790089 .2699777 -.1663584 .7243761
-------------+------------------------------------------------
White |
_subpop_1 | .8807481 .043279 .809353 .9521431
_subpop_2 | .8079233 .0656598 .699608 .9162386
_subpop_3 | .880132 .0284381 .8332192 .9270448
_subpop_4 | 1 . . .
_subpop_5 | .7615289 .0511107 .6772145 .8458433
_subpop_6 | .6686341 .0495443 .5869037 .7503645
_subpop_7 | .6694451 .0474141 .5912287 .7476614
_subpop_8 | .2771716 .2752663 -.1769198 .731263
-------------+------------------------------------------------
MR |
_subpop_1 | .0267708 .0221536 -.0097747 .0633164
_subpop_2 | .0232907 .0153762 -.0020746 .048656
_subpop_3 | .0032099 .0024432 -.0008206 .0072404
_subpop_4 | 0 (no observations)
_subpop_5 | .0074364 .0028953 .0026601 .0122126
_subpop_6 | .0322927 .0186794 .0014783 .063107
_subpop_7 | .004887 .003178 -.0003555 .0101295
_subpop_8 | .4438195 .2456526 .0385802 .8490589
--------------------------------------------------------------
.
. svy, subpop(if career_stage_rev2==2 & DGRDG_n==3): tabulate RACETHM_n, se ci level(90)
(running tabulate on estimation sample)
Number of strata = 1 Number of obs = 1,311
Population size = 252,142.35
Subpop. no. obs = 241
Subpop. size = 43,459.37
Replications = 320
Design df = 319
----------------------------------------------------------
RACETHM_n | proportion se lb ub
----------+-----------------------------------------------
AsianNHO | .2483 .0438 .1832 .3273
AIAN | 0 0
Black | .003 .0018 .0011 .0081
Hispanic | .0743 .025 .0422 .1277
White | .6694 .0474 .5872 .7425
MR | .0049 .0032 .0017 .0142
|
Total | 1
----------------------------------------------------------
Key: proportion = cell proportion
se = jackknife standard error of cell proportion
lb = lower 90% confidence bound for cell proportion
ub = upper 90% confidence bound for cell proportion
Table contains a zero in the marginals.
Statistics cannot be computed.
0 Response to survey data - 90% CIs for a proportion - tabulate or proportion?
Post a Comment