1) I am leaning toward using the tabulate results for the CIs, as some of the CIs using the "proportion" option are negative. Thoughts?
2) Are there other ways of calculating the 90% CIs in Stata for survey proportions that I should consider here?
3) Are there any good applied research studies with good examples of how to present the proportions and SEs or 90% CIs? (tables or graphs) - maybe not a Stata question.
thanks in advance for any advice!
Code:
. svyset [pw = WTSURVY], jkrw(RW0001- RW0320, multiplier(0.05)) vce(jack) mse
      pweight: WTSURVY
          VCE: jackknife
          MSE: on
    jkrweight: RW0001 .. RW0320
  Single unit: missing
     Strata 1: <one>
         SU 1: <observations>
        FPC 1: <zero>
. svy: proportion RACETHM_n, over(career_stage_rev2 DGRDG_n) level(90)
(running proportion on estimation sample)
Jackknife replications (320)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 
..................................................    50
..................................................   100
..................................................   150
..................................................   200
..................................................   250
..................................................   300
....................
Survey: Proportion estimation
Number of strata =       1        Number of obs   =      1,311
                                  Population size = 252,142.35
                                  Replications    =        320
                                  Design df       =        319
   AsianNHOPI: RACETHM_n = AsianNHOPI
         AIAN: RACETHM_n = AIAN
        Black: RACETHM_n = Black
     Hispanic: RACETHM_n = Hispanic
        White: RACETHM_n = White
           MR: RACETHM_n = MR
         Over: career_stage_rev2 DGRDG_n
    _subpop_1: 20 or more years Bachelors
    _subpop_2: 20 or more years Masters
    _subpop_3: 20 or more years Doctorate
    _subpop_4: 20 or more years Professional
    _subpop_5: Less than 20 yrs Bachelors
    _subpop_6: Less than 20 yrs Masters
    _subpop_7: Less than 20 yrs Doctorate
    _subpop_8: Less than 20 yrs Professional
--------------------------------------------------------------
             |              Jknife *N             ormal
        Over | Proportion   Std. Err.     [90% Conf. Interval]
-------------+------------------------------------------------
AsianNHOPI   |
   _subpop_1 |   .0232649   .0103291      .0062255    .0403043
   _subpop_2 |   .0101458   .0081955     -.0033739    .0236655
   _subpop_3 |   .0861882   .0234436      .0475145    .1248618
   _subpop_4 |          0  (no observations)
   _subpop_5 |   .1010706    .025582      .0588694    .1432719
   _subpop_6 |   .1334251   .0323168      .0801139    .1867364
   _subpop_7 |   .2483284    .043813      .1760524    .3206043
   _subpop_8 |          0  (no observations)
-------------+------------------------------------------------
AIAN         |
   _subpop_1 |          0  (no observations)
   _subpop_2 |    .022717   .0171829     -.0056286    .0510626
   _subpop_3 |          0  (no observations)
   _subpop_4 |          0  (no observations)
   _subpop_5 |    .000104    .000122     -.0000973    .0003053
   _subpop_6 |   .0080136    .005543     -.0011304    .0171576
   _subpop_7 |          0  (no observations)
   _subpop_8 |          0  (no observations)
-------------+------------------------------------------------
Black        |
   _subpop_1 |   .0325514   .0203369     -.0009974    .0661001
   _subpop_2 |   .0865779   .0572381     -.0078446    .1810005
   _subpop_3 |   .0072528   .0054652     -.0017628    .0162684
   _subpop_4 |          0  (no observations)
   _subpop_5 |   .0464535   .0292895     -.0018638    .0947708
   _subpop_6 |   .0848761   .0471426      .0071076    .1626445
   _subpop_7 |   .0030085   .0018134       .000017        .006
   _subpop_8 |          0  (no observations)
-------------+------------------------------------------------
Hispanic     |
   _subpop_1 |   .0366649   .0248132     -.0042681    .0775978
   _subpop_2 |   .0493453   .0213093      .0141927     .084498
   _subpop_3 |   .0232171   .0143399     -.0004386    .0468728
   _subpop_4 |          0  (no observations)
   _subpop_5 |   .0834066   .0350203      .0256355    .1411777
   _subpop_6 |   .0727584   .0242182       .032807    .1127099
   _subpop_7 |   .0743311   .0250366      .0330296    .1156325
   _subpop_8 |   .2790089   .2699777     -.1663584    .7243761
-------------+------------------------------------------------
White        |
   _subpop_1 |   .8807481    .043279       .809353    .9521431
   _subpop_2 |   .8079233   .0656598       .699608    .9162386
   _subpop_3 |    .880132   .0284381      .8332192    .9270448
   _subpop_4 |          1          .             .           .
   _subpop_5 |   .7615289   .0511107      .6772145    .8458433
   _subpop_6 |   .6686341   .0495443      .5869037    .7503645
   _subpop_7 |   .6694451   .0474141      .5912287    .7476614
   _subpop_8 |   .2771716   .2752663     -.1769198     .731263
-------------+------------------------------------------------
MR           |
   _subpop_1 |   .0267708   .0221536     -.0097747    .0633164
   _subpop_2 |   .0232907   .0153762     -.0020746     .048656
   _subpop_3 |   .0032099   .0024432     -.0008206    .0072404
   _subpop_4 |          0  (no observations)
   _subpop_5 |   .0074364   .0028953      .0026601    .0122126
   _subpop_6 |   .0322927   .0186794      .0014783     .063107
   _subpop_7 |    .004887    .003178     -.0003555    .0101295
   _subpop_8 |   .4438195   .2456526      .0385802    .8490589
--------------------------------------------------------------
. 
. svy, subpop(if career_stage_rev2==2 & DGRDG_n==3): tabulate RACETHM_n, se ci level(90)
(running tabulate on estimation sample)
Number of strata   =         1                  Number of obs     =      1,311
                                                Population size   = 252,142.35
                                                Subpop. no. obs   =        241
                                                Subpop. size      =  43,459.37
                                                Replications      =        320
                                                Design df         =        319
----------------------------------------------------------
RACETHM_n | proportion          se          lb          ub
----------+-----------------------------------------------
 AsianNHO |      .2483       .0438       .1832       .3273
     AIAN |          0           0                        
    Black |       .003       .0018       .0011       .0081
 Hispanic |      .0743        .025       .0422       .1277
    White |      .6694       .0474       .5872       .7425
       MR |      .0049       .0032       .0017       .0142
          | 
    Total |          1                                    
----------------------------------------------------------
  Key:  proportion  =  cell proportion
        se          =  jackknife standard error of cell proportion
        lb          =  lower 90% confidence bound for cell proportion
        ub          =  upper 90% confidence bound for cell proportion
  Table contains a zero in the marginals.
  Statistics cannot be computed.
0 Response to survey data - 90% CIs for a proportion - tabulate or proportion?
Post a Comment