My question is on estimating coefficients for random effects in mixed effect models. I am new to mixed effect models. One reviewer insisted on using mixed effect models with AIC and BIC results for my paper. I managed to do that so far. I am building a 3 level mixed effect model. The model includes 2367 students clustered within 93 classes which are clustered within 24 schools. I made 6 different models and the most complex one as follows;
HTML Code:
Fitting fixed-effects model: Iteration 0: log likelihood = -1363.5138 Iteration 1: log likelihood = -1085.804 Iteration 2: log likelihood = -1059.1874 Iteration 3: log likelihood = -1058.9712 Iteration 4: log likelihood = -1058.9711 Refining starting values: Grid node 0: log likelihood = -1056.6141 Fitting full model: Iteration 0: log likelihood = -1056.6141 (not concave) Iteration 1: log likelihood = -1046.24 (not concave) Iteration 2: log likelihood = -1040.4289 Iteration 3: log likelihood = -1038.3414 Iteration 4: log likelihood = -1038.1282 Iteration 5: log likelihood = -1038.1257 Iteration 6: log likelihood = -1038.1257 Mixed-effects ologit regression Number of obs = 2,637 ------------------------------------------------------------- | No. of Observations per Group Group Variable | Groups Minimum Average Maximum ----------------+-------------------------------------------- school_num~r | 24 24 109.9 160 class_code | 93 10 28.4 41 ------------------------------------------------------------- Integration method: mvaghermite Integration pts. = 7 Wald chi2(15) = 332.82 Log likelihood = -1038.1257 Prob > chi2 = 0.0000 ---------------------------------------------------------------------------------------------- __14_Going_to_Parks1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -----------------------------+---------------------------------------------------------------- Age_Smaller_10 | 3.386472 1.080845 3.82 0.000 1.811646 6.33026 Age_between_10_14 | 3.232854 .8032719 4.72 0.000 1.986492 5.261207 Age_between_15_18 | 1 (omitted) GenderFemale | 1.157021 .1446025 1.17 0.243 .9056479 1.478165 Involving Physical activity| 1.006707 .1186667 0.06 0.955 .799037 1.268351 Overweight_Obeze | .7651281 .1032076 -1.98 0.047 .587376 .9966716 Mother_Father_Uni_Gra | .8212992 .1248524 -1.30 0.195 .609682 1.106368 Living_in_Gated_community1 | 1.769015 .3537469 2.85 0.004 1.195413 2.61785 No parks around | .192004 .0236017 -13.42 0.000 .1508961 .2443106 Overall quality | .2330365 .0336746 -10.08 0.000 .1755587 .3093326 -----------------------------+---------------------------------------------------------------- /cut1 | -1.568161 .2280446 -6.88 0.000 -2.01512 -1.121202 -----------------------------+---------------------------------------------------------------- school_number | var(_cons)| .1506769 .1114597 .0353501 .642248 -----------------------------+---------------------------------------------------------------- school_number>class_code | var(_cons)| .2778238 .1027409 .1345829 .5735204 ---------------------------------------------------------------------------------------------- LR test vs. ologit model: chi2(2) = 41.69 Prob > chi2 = 0.0000 Note: LR test is conservative and provided only for reference. . estat ic Akaike's information criterion and Bayesian information criterion ----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 2,637 . -1038.126 18 2112.251 2218.045 ----------------------------------------------------------------------------- Note: N=Obs used in calculating BIC; see [R] BIC note.
I have a minor correction for the paper and she wants to see random effect estimates for all multilevel level regression models. However, as I am new to multi-effect models. I could not figure out how to get random effect estimates. I would appreciate help from experienced stata users.
Best Regards,
0 Response to random effect estimates for all multilevel level regression model
Post a Comment