Code:
* Example generated by -dataex-. For more info, type help dataex clear input long id float(year y x GDP) byte(id1 id2 id3 id4 year1 year2 year3 year4) 1 2011 1.477398 .3132002 5.3 1 0 0 0 1 0 0 0 1 2012 1.7059364 .55597913 6.2 1 0 0 0 0 1 0 0 1 2013 2.2016048 .9382851 7.5 1 0 0 0 0 0 1 0 1 2014 2.3101015 .7363221 7.8 1 0 0 0 0 0 0 1 2 2011 .4857773 .19240755 5.3 0 1 0 0 1 0 0 0 2 2012 1.192688 .19514006 6.2 0 1 0 0 0 1 0 0 2 2013 2.0814517 .9509598 7.5 0 1 0 0 0 0 1 0 2 2014 .6230519 .29044542 7.8 0 1 0 0 0 0 0 1 3 2011 2.2117586 .8190824 5.3 0 0 1 0 1 0 0 0 3 2012 1.8595012 .4882096 6.2 0 0 1 0 0 1 0 0 3 2013 1.259727 .27048662 7.5 0 0 1 0 0 0 1 0 3 2014 1.4586093 .58597064 7.8 0 0 1 0 0 0 0 1 4 2011 .10921151 .05390351 5.3 0 0 0 1 1 0 0 0 4 2012 2.0568795 .5583192 6.2 0 0 0 1 0 1 0 0 4 2013 1.7943153 .6395468 7.5 0 0 0 1 0 0 1 0 4 2014 2.802899 .9747689 7.8 0 0 0 1 0 0 0 1 end
however, I run the following regressions and obtain corresponding results:
Code:
. // LSDV
. reg y x GDP i.id i.year, robust
note: 2014.year omitted because of collinearity
Linear regression Number of obs = 16
F(7, 8) = 11.60
Prob > F = 0.0013
R-squared = 0.8951
Root MSE = .32347
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 2.17054 .3308689 6.56 0.000 1.407555 2.933525
GDP | .0286521 .0887787 0.32 0.755 -.1760719 .2333761
|
id |
2 | -.3315972 .250505 -1.32 0.222 -.9092628 .2460684
3 | -.0201396 .2505058 -0.08 0.938 -.597807 .5575277
4 | -.060784 .265267 -0.23 0.825 -.6724908 .5509228
|
year |
2012 | .3795345 .203945 1.86 0.100 -.0907635 .8498324
2013 | -.0707095 .2083043 -0.34 0.743 -.5510601 .4096412
2014 | 0 (omitted)
|
_cons | .2742371 .7161895 0.38 0.712 -1.377299 1.925773
------------------------------------------------------------------------------
. reg y x GDP i.id year1-year4, robust
note: year3 omitted because of collinearity
note: year4 omitted because of collinearity
Linear regression Number of obs = 16
F(7, 8) = 11.60
Prob > F = 0.0013
R-squared = 0.8951
Root MSE = .32347
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 2.17054 .3308689 6.56 0.000 1.407555 2.933525
GDP | .2643503 .7322967 0.36 0.727 -1.424329 1.95303
|
id |
2 | -.3315972 .250505 -1.32 0.222 -.9092628 .2460684
3 | -.0201396 .2505058 -0.08 0.938 -.597807 .5575277
4 | -.060784 .265267 -0.23 0.825 -.6724908 .5509228
|
year1 | .5892453 1.735868 0.34 0.743 -3.413674 4.592165
year2 | .7566516 1.081587 0.70 0.504 -1.737492 3.250795
year3 | 0 (omitted)
year4 | 0 (omitted)
_cons | -1.564208 5.68777 -0.28 0.790 -14.68023 11.55181
------------------------------------------------------------------------------
.
. reg y x GDP i.id year2 year3 year4, robust
note: year4 omitted because of collinearity
Linear regression Number of obs = 16
F(7, 8) = 11.60
Prob > F = 0.0013
R-squared = 0.8951
Root MSE = .32347
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 2.17054 .3308689 6.56 0.000 1.407555 2.933525
GDP | .0286521 .0887787 0.32 0.755 -.1760719 .2333761
|
id |
2 | -.3315972 .250505 -1.32 0.222 -.9092628 .2460684
3 | -.0201396 .2505058 -0.08 0.938 -.597807 .5575277
4 | -.060784 .265267 -0.23 0.825 -.6724908 .5509228
|
year2 | .3795345 .203945 1.86 0.100 -.0907635 .8498324
year3 | -.0707095 .2083043 -0.34 0.743 -.5510601 .4096412
year4 | 0 (omitted)
_cons | .2742371 .7161895 0.38 0.712 -1.377299 1.925773
------------------------------------------------------------------------------
. reg y x GDP i.id year3 year4 year2, robust
note: year2 omitted because of collinearity
Linear regression Number of obs = 16
F(7, 8) = 11.60
Prob > F = 0.0013
R-squared = 0.8951
Root MSE = .32347
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 2.17054 .3308689 6.56 0.000 1.407555 2.933525
GDP | .4503573 .2562406 1.76 0.117 -.1405346 1.041249
|
id |
2 | -.3315972 .250505 -1.32 0.222 -.9092628 .2460684
3 | -.0201396 .2505058 -0.08 0.938 -.597807 .5575277
4 | -.060784 .265267 -0.23 0.825 -.6724908 .5509228
|
year3 | -.9984607 .4933028 -2.02 0.078 -2.136019 .1390975
year4 | -1.054263 .5665141 -1.86 0.100 -2.360647 .2521209
year2 | 0 (omitted)
_cons | -1.9608 1.567078 -1.25 0.246 -5.57449 1.652889
------------------------------------------------------------------------------
. reg y x GDP i.id year4 year2 year3, robust
note: year3 omitted because of collinearity
Linear regression Number of obs = 16
F(7, 8) = 11.60
Prob > F = 0.0013
R-squared = 0.8951
Root MSE = .32347
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 2.17054 .3308689 6.56 0.000 1.407555 2.933525
GDP | -.0034885 .102658 -0.03 0.974 -.2402184 .2332413
|
id |
2 | -.3315972 .250505 -1.32 0.222 -.9092628 .2460684
3 | -.0201396 .2505058 -0.08 0.938 -.597807 .5575277
4 | -.060784 .265267 -0.23 0.825 -.6724908 .5509228
|
year4 | .0803517 .2367095 0.34 0.743 -.4655014 .6262048
year2 | .4084611 .2018056 2.02 0.078 -.0569035 .8738257
year3 | 0 (omitted)
_cons | .4445827 .7297813 0.61 0.559 -1.238296 2.127461
------------------------------------------------------------------------------
0 Response to How does Stata deal with multicollinear variables?
Post a Comment