Dear Statalists,

currently I am struggling with the outputs of my pooled portfolio regression. I have tried multiple commands, however, none of those have produced proper results. I am trying to replicate a paper and since I am using the same dataset and since the firm-level and cross-section analysis generate the correct results I am confused about the results of the portfolio regression.

The background is as follows: Daily stock return data are used and merged with 116 events (defined as eventnumber to uniquely identify the events by company). Then firms (ID: PERMNO) are sorted into quartiles on each event date (if events ==0) based on the variable quant which takes the value 1,2 (2+3) or 4. Afterwards I compute value weighted portfolio returns on each day for the market (all firms) and for the quartiles. Next, cumulative portfolio returns are calculated one, two and three days after the events. Finally, a pooled regression of the portfolio returns over the 116 events with robust standard errors has to be implemented.

Value weighted returns are generated as follows:
for the market:
bys bdate: egen VW_ret = wtmean(R), weight(lagcap) //where R = daily company returns and lagcap= lagged market cap

for quantiles:
bys quant bdate: egen WWwtmean = wtmean(R), weight(lagcap)

Cumulative portfolio returns are calculated as follows:
for the market:
gen logVW=ln(VW_ret/100+1)
by PERMNO eventnumber, sort: egen sumlogVW=total(logVW) if PFwind1==1 // where PFwind1 takes the value 1 on the day of the event and the day after
gen cumretVW= exp(sumlogVW)-1
replace cumretVW= cumretVW*100

for quantiles: (example for day +3)
gen logWW=ln(WWwtmean/100+1)
by PERMNO eventnumber, sort: egen sumlogwtmean3q4=total(logWW) if quant ==4 & PFwind3==1. // where PFwind3 takes the value 1 on the day of the event, day +1, +2 and +3 after the event
gen cumretwtmean3q4= exp(sumlogwtmean3q4)-1
replace cumretwtmean3q4= cumretwtmean3q4*100

the data looks like this :

Code:
* Example generated by -dataex-. To install: ssc install dataex
clear
input double(date PERMNO) float(Surprise Expected eventnumber R lagcap events PFwind1 PFwind3) double quant float(cumretVW VW_ret WWwtmean cumretwtmean3q4)
12771 10010 -.17  .17  9        7.5     50.93 -1 0 0 4          .    -.3414079   -.2962202          .
12772 10010 -.17  .17  9          0  54.74975  0 1 1 4   .7670625  -.006085026   .19407575   2.276187
12773 10010 -.17  .17  9  4.6511626  54.74975  1 1 1 4   .7670625     .7731946    .7458118   2.276187
12774 10010 -.17  .17  9  4.4444447  57.29625  2 0 1 4          .    .03326809    .3828943   2.276187
12775 10010 -.17  .17  9  -4.255319  59.84275  3 0 1 4          .     .3060611    .9359257   2.276187
12779 10010 -.17  .17  9          0  57.29625  4 0 0 4          .    .55334634    .9796897          .
12969 10010 -.01 -.24 13   1.612903  80.28225 -1 0 0 4          .     .2371832    .9550785          .
12970 10010 -.01 -.24 13 -2.3809524  81.57713  0 1 1 4   1.976449      1.29796     .919243   2.712516
12971 10010 -.01 -.24 13  -2.439024  79.63481  1 1 1 4   1.976449     .6697953   1.1921308   2.712516
12974 10010 -.01 -.24 13  -.8333334   77.6925  2 0 1 4          .    .11222823     .461251   2.712516
12975 10010 -.01 -.24 13 -1.6806724  77.04506  3 0 1 4          .    -.3884451    .1161317   2.712516
12976 10010 -.01 -.24 13   .8547009  75.75019  4 0 0 4          .     1.248462   1.6477095          .
13016 10010    0    0 14          0  76.39763 -1 0 0 4          .    -.4188256 -.023558734          .
13017 10010    0    0 14 -1.6949153  76.39763  0 1 1 4 -.03781391    .24843067  -.07743979  .22094886
13018 10010    0    0 14    .862069  75.10275  1 1 1 4 -.03781391   -.28553522    .4904737  .22094886
13019 10010    0    0 14  -2.564103  75.75019  2 0 1 4          .    -.0727951  -.56725055  .22094886
13020 10010    0    0 14  -1.754386  73.80788  3 0 1 4          .    .25530404    .3784801  .22094886
13023 10010    0    0 14   3.749997    72.513  4 0 0 4          .   -.55950946   -.7853403          .
12452 10011  .12  .13  1  3.7037036  35.79525 -1 0 0 4          .    -.1499871  -.15201998          .
12453 10011  .12  .13  1 -1.7857144    37.121  0 1 1 4  -1.712219   -2.2323267   -3.080331 -1.7046466
12456 10011  .12  .13  1          0 36.458126  1 1 1 4  -1.712219     .5319836   .21640114 -1.7046466
12457 10011  .12  .13  1 -1.8181818 36.458126  2 0 1 4          .       .11081    .8276314 -1.7046466
12458 10011  .12  .13  1  3.7037036  35.79525  3 0 1 4          .    .56751394    .3697171 -1.7046466
12459 10011  .12  .13  1  -3.571429    37.121  4 0 0 4          .    -.6179573    .1871157          .
12498 10011 -.03  .28  2          0  41.76112 -1 0 0 4          .    -.5262008   -.7944527          .
12499 10011 -.03  .28  2          0  41.76112  0 1 1 4   .0542323    .05859204    .1815041 -.23109536
12500 10011 -.03  .28  2          0  41.76112  1 1 1 4   .0542323 -.0043571857    .3031973 -.23109536
12501 10011 -.03  .28  2          0  41.76112  2 0 1 4          .    -.9253551  -1.1787937 -.23109536
12502 10011 -.03  .28  2 -1.5873017  41.76112  3 0 1 4          .    -.6426816    .4714634 -.23109536
12505 10011 -.03  .28  2   1.612903  41.09825  4 0 0 4          .    -.4964504   -2.108958          .
12523 10011   .1  .15  3 -1.1363636    58.333 -1 0 0 4          .  -.016102899  -.11803642          .
12526 10011   .1  .15  3  -3.448276  57.67012  0 1 1 4 -1.1300212    -.8893583  -1.2171623  -3.534365
12527 10011   .1  .15  3 -2.3809524   55.6815  1 1 1 4 -1.1300212   -.24282257  -1.6501745  -3.534365
12528 10011   .1  .15  3  -8.536586  54.35575  2 0 1 4          .    -.4788745  -1.3623123  -3.534365
12529 10011   .1  .15  3          8  49.71563  3 0 1 4          .     1.717393     .664109  -3.534365
12530 10011   .1  .15  3  -1.234568  53.69287  4 0 0 4          .    .04370558      .75678          .
12554 10011  .13  .37  4   3.488372  57.00725 -1 0 0 4          .   -.24729076   -.8609055          .
12555 10011  .13  .37  4 -1.1235955  58.99588  0 1 1 4   1.920738       .88229   -.3571359  1.2136898
12556 10011  .13  .37  4          0    58.333  1 1 1 4   1.920738    1.0293659    .6694232  1.2136898
12557 10011  .13  .37  4 -1.1363636    58.333  2 0 1 4          .     .6864278    .4042949  1.2136898
12558 10011  .13  .37  4  1.1494253  57.67012  3 0 1 4          .   -.23319443    .4947061  1.2136898
12561 10011  .13  .37  4  1.1363636    58.333  4 0 0 4          .    -.3567504  -.18510152          .
12604 10011 -.05  .05  5  1.1494253  57.67012 -1 0 0 4          .   .013143126    -.331488          .
12605 10011 -.05  .05  5          0    58.333  0 1 1 4  .55523014   -.00564168   .13538904   .4628382
12606 10011 -.05  .05  5 -2.2727273    58.333  1 1 1 4  .55523014     .5609035    .3049591   .4628382
12607 10011 -.05  .05  5 -1.1627907  57.00725  2 0 1 4          .     .3117923     .177262   .4628382
12610 10011 -.05  .05  5  -.5882353  56.34438  3 0 1 4          .   -.14346622  -.15500695   .4628382
12611 10011 -.05  .05  5   -.591716  56.01294  4 0 0 4          .     .2175465    .1047544          .
12645 10011  .14  .36  6   1.234568  53.69287 -1 0 0 4          .   -.01540278   .58433354          .
12646 10011  .14  .36  6          0  54.35575  0 1 1 4   .9098445     .6806052   .25937244  1.5981777
12647 10011  .14  .36  6  -2.439024  54.35575  1 1 1 4   .9098445    .22768973    .8943865  1.5981777
12648 10011  .14  .36  6      -1.25     53.03  2 0 1 4          .   -.29631752    .3427862  1.5981777
12649 10011  .14  .36  6  1.2658228  52.36713  3 0 1 4          .    .10737886   .09393815  1.5981777
12652 10011  .14  .36  6          0     53.03  4 0 0 4          .   -.16195433   .24134608          .
12687 10011  -.2   .2  7 -1.3157895      53.2 -1 0 0 4          .     .2510907    -.288022          .
12688 10011  -.2   .2  7 -1.3333334      52.5  0 1 1 4   .8540923     .1863896   -.2154016  1.2641627
12689 10011  -.2   .2  7          0      51.8  1 1 1 4   .8540923     .6664604    .7740508  1.2641627
12690 10011  -.2   .2  7   2.702703      51.8  2 0 1 4          .    -.3703903    -.079102  1.2641627
end
format %td date

The pooled regression for the cumulative return on day 3 for quantile 4 which generates a proper t-stat is following:

Code:
. regress cumretwtmean3q4 Expected Surprise if events==3 & quant==4, vce (cluster eventnumber)        ***where events==3 defined day 3 after the event

Linear regression                    Number of obs     =     63,508
                                                F(2, 115)         =       1.01
                                                Prob > F          =     0.3684
                                                R-squared         =     0.0383
                                                Root MSE          =     3.0293

                          (Std. Err. adjusted for 116 clusters in eventnumber)
------------------------------------------------------------------------------
             |               Robust
cumretwt~3q4 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    Expected |   1.192924   1.719855     0.69   0.489    -2.213779    4.599626
    Surprise |  -7.751858   5.716188    -1.36   0.178    -19.07453     3.57081
       _cons |   .4040321   .2843154     1.42   0.158    -.1591419    .9672061
------------------------------------------------------------------------------
The "correct" results should be:
Expected: 0.379 (0.35)
Surprise: -5.334** (-2.16)
R2: 0.026


Since my portfolio results on day 3 are insignificant, they are contradictory to my cross section results where the independent variables (Expected Surprise) get significant on day 2 and 3 after the event for the same firms in quartile 4.

If I do not cluster for eventnumber my t-stat gets enormous (100+). If I use xtreg I get the same results. If I use xtscc, pooled my t-stat gets only smaller. Newey is not helpful as well. I also tried to calculate the cumulative returns without considering the value weighted returns on the event date. However, then my coefficients turn positive.

Therefore, I am running out of ideas how to "fix" the portfolio regression.

I would be very very grateful about any idea or suggestion on how to proceed further. Many thanks in advance!

Kind regards!