Code:
. zinb dp_ mig2gross_2016 popden per_vacrent medrent, inflate(mig2gross_2016 popden per_vac
> rent medrent) zip
....
Zero-inflated negative binomial regression Number of obs = 4,716
Nonzero obs = 906
Zero obs = 3,810
Inflation model = logit LR chi2(4) = 674.94
Log likelihood = -7027.052 Prob > chi2 = 0.0000
--------------------------------------------------------------------------------
dp_ | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
dp_ |
mig2gross_2016 | .0013656 .0000791 17.26 0.000 .0012106 .0015207
popden | .0000187 6.47e-06 2.89 0.004 5.99e-06 .0000313
per_vacrent | .1064657 .0395465 2.69 0.007 .0289561 .1839754
medrent | .0004327 .0001698 2.55 0.011 .0000999 .0007656
_cons | 3.867626 .2184873 17.70 0.000 3.439399 4.295853
---------------+----------------------------------------------------------------
inflate |
mig2gross_2016 | -.0206951 .0012508 -16.54 0.000 -.0231467 -.0182435
popden | -5.82e-06 .0000493 -0.12 0.906 -.0001025 .0000908
per_vacrent | -.1528612 .045326 -3.37 0.001 -.2416986 -.0640238
medrent | -.0034237 .0002269 -15.09 0.000 -.0038685 -.002979
_cons | 5.86385 .2429657 24.13 0.000 5.387646 6.340054
---------------+----------------------------------------------------------------
/lnalpha | .1620231 .0510639 3.17 0.002 .0619397 .2621065
---------------+----------------------------------------------------------------
alpha | 1.175887 .0600454 1.063898 1.299665
--------------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 3.0e+05 Pr>=chibar2 = 0.0000
. margins, dydx(*)
Average marginal effects Number of obs = 4,716
Model VCE : OIM
Expression : Predicted number of events, predict()
dy/dx w.r.t. : mig2gross_2016 popden per_vacrent medrent
--------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
---------------+----------------------------------------------------------------
mig2gross_2016 | 1.787321 .8142064 2.20 0.028 .1915056 3.383136
popden | .0226598 .0108408 2.09 0.037 .0014123 .0439074
per_vacrent | 129.9724 70.19302 1.85 0.064 -7.603427 267.5481
medrent | .546259 .3278685 1.67 0.096 -.0963515 1.188869
--------------------------------------------------------------------------------First, I understand that the coef. is the increase in the log of the expected count as a function of the predictor variables; but I can barely understand what the impact of that is by looking at it. I get that you can exponentiate the coefficients and understand it that way, so mig2gross_2016's exponentiated coefficient is now 1.001, and a one unit increase in mig2gross_2016 is now a 1.001 increase in dp_. Is that a correct interpretation and is there a command so that stata produces the exponentiated coefficients or do I have to do that by hand?
Second: I want to get mig2gross at different levels (at 0, 1, 100, 1000) because it also has a lot of zeros, so I want to see the marginal change when it's at different levels. But I can only get margins to work with zinb as margins, dydx(*). Any suggestions for getting the right code, and am I interpreting margin correctly?
Third: I have dummy variables for state (10 categories) that I originally wanted to treat as multiple levels, but I haven't found a way to do that for ZINB. is it better to just include them in the equation like:
Code:
zinb dp_ mig2gross_2016 popden per_vacrent medrent i.state_n, inflate(mig2gross_2016 popden per_vacrent medrent)
0 Response to Understanding ZINB & Post Estimation better
Post a Comment