I am running an OLS regression with robust clustered standard errors (due to heteroskedasticity). I am using panel data.
My dependent variable is defined as the cash share of total transactions made in a typical month, measured between 0 and 1. Out of 6,695 observations, there are 178 observations with a response of 1 and 634 observations with a response of 0.
My explanatory variables are as follows:
- Income - this is yearly household income. It is calculated in dollars as the mean of an assigned income category. i.e. 7,500 if the respondent falls within $5-10k income category.
- Age - measured in years
- Education - Four categories assigned values of 1- 4.
(1) I have read seen previous posts indicating that other models are better than OLS when the dependent variable is a proportion like mine. For example, use logit regression? I’m not sure how to run this type of regression nor how to interpret the results. I am not sure why OLS wouldn’t work well with a dependent variable measured as a proportion between 0 and 1.
(2) How can I accurately interpret coefficients on the explanatory variables? I am a bit confused by this.
(3) Also, the coefficient on income is very small. I was thinking of dividing income/1000. Is this method okay to use to re-scale?
(4) is it appropriate to take log of my dependent variable if it is a proportion?
Any advice would be really appreciated. Thanks!
I attach below the code for conducting the OLS regression and also the sample data using -dataex-. I did not know how to insert a table of my results.
Code:
reg cashshare income age i.educat male rating holdings credit cheque i.year if sample==1, robust
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(year cashshare) double(age income) float(educat male) double credit float rating double(holdings cheque) float sample 2015 .1334569 31 112500 4 1 1 20 108.33333333333341 1 1 2016 .3030303 32 112500 4 1 1 21 20 1 1 2017 .1935484 34 112500 4 1 1 24 969.6428580000008 1 1 2015 .12854996 66 27500 4 0 1 21 300.0000000000001 1 1 2016 .1992903 67 17500 4 0 1 22 180.00000000000006 1 1 2017 .1682243 68 17500 4 0 1 23 280 1 1 2016 .020833334 41 112500 3 1 1 29 0 1 1 2017 1 42 112500 3 1 1 25 80 1 1 2015 .05921588 25 32500 2 1 0 25 82.5 1 1 2016 0 26 37500 2 1 0 26 11.666666666666664 1 1 2017 0 27 37500 2 1 1 24 973.9285715999991 1 1 2015 .3259842 53 37500 3 0 1 21 130.44642870000004 1 1 2016 .20155144 55 32500 3 0 1 23 80.00000000000001 1 1 2017 .4016003 56 22500 3 0 1 22 60.00000000000001 1 1 2015 .06490872 26 55000 4 0 1 20 80 1 1 2016 .09375 28 55000 4 0 1 20 20 1 1 2015 .05271691 83 112500 3 1 1 22 1304.4642869999998 1 1 2016 .05449017 84 112500 3 1 1 18 600 1 1 2017 .24793923 85 112500 3 1 1 20 300 0 1 2015 0 38 112500 3 1 1 14 83.33333333333327 1 1 2016 .13636364 40 162500 3 1 1 17 85.73735572900041 1 1 2017 0 41 162500 3 1 1 15 199.99999999999994 1 1 2015 .53912795 57 22500 2 0 1 29 80 1 1 2016 .12972517 58 22500 2 0 1 28 200.00000000000014 1 1 2017 .54251766 59 22500 2 0 1 29 13.333333333333336 1 1 2015 .023809524 57 162500 4 1 1 22 869.6428579999998 1 1 2016 .29116118 58 55000 4 1 1 23 710.3417382269064 1 1 2017 .13953489 59 45000 4 1 1 21 869.6428579999998 1 1 2015 .52614975 44 87500 3 1 1 23 434.82142900000036 1 1 2016 .7837778 46 87500 3 1 1 23 434.82142900000036 1 1 2017 .8249276 47 87500 3 1 1 23 500.00000000000045 1 1 2015 .12204076 54 162500 3 1 1 21 150.0000000000001 1 1 2016 0 56 162500 3 1 1 22 40 1 1 2017 .0961064 57 162500 3 1 1 24 60.00000000000001 1 1 2015 .06973366 64 17500 3 0 1 16 100.00000000000007 1 1 2016 .1854961 66 17500 3 0 1 22 708.333333333333 1 1 2017 .0924408 67 11250 3 0 1 19 300 1 1 2015 .50914204 48 6250 3 0 0 24 2174.107145 0 1 2016 .3966907 49 8750 3 0 0 30 1779.2857159999999 0 1 2017 .8424754 50 8750 3 0 0 24 521.7857148000004 1 1 2015 .24536224 54 112500 3 0 1 24 257.4107145000001 1 1 2017 . 57 112500 3 0 1 16 . 1 0 2015 .05657994 56 162500 3 1 1 19 200.00000000000014 1 1 2016 .2283169 58 162500 3 1 1 22 100.00000000000006 1 1 2017 .14577565 58 162500 3 1 1 20 100.00000000000007 1 1 2015 .2158688 53 67500 2 1 1 25 373.92857160000017 1 1 2016 .53102005 55 67500 2 1 0 19 240.00000000000014 1 1 2015 .03986711 47 162500 3 0 1 19 33.33333333333334 1 1 2017 .0815647 50 162500 3 0 1 14 100.00000000000007 1 1 2015 .06666667 49 67500 4 1 1 21 23.333333333333336 1 1 2016 .03590127 51 67500 4 1 1 19 40 1 1 2017 .07803112 52 67500 4 1 1 26 80 1 1 2015 .1700716 62 87500 2 1 1 24 280.8928574000001 1 1 2016 .17845364 64 112500 2 1 1 24 180.00000000000006 1 1 2017 .28082514 64 112500 2 1 1 23 146.96428580000003 1 1 2015 .20849185 64 8750 3 0 1 16 173.92857160000003 1 1 2016 .46384865 65 8750 3 0 1 23 95.29761913333337 1 1 2017 .3653846 66 8750 3 0 1 17 120 1 1 2016 .6631991 50 32500 2 1 1 25 782.6785722000002 1 1 2017 .6666667 51 32500 2 1 1 22 360.0000000000001 1 1 2015 .04206984 46 162500 4 1 1 19 20 1 1 2017 0 49 162500 4 1 1 20 80 1 1 2015 .1640541 44 87500 3 1 1 20 1600 1 1 2016 .3001541 45 112500 3 1 1 20 120.00000000000001 1 1 2017 .25 46 112500 3 1 1 16 100.00000000000007 1 1 2015 .12 28 2500 4 0 1 16 260 1 1 2016 0 29 17500 4 0 1 21 80 1 1 2017 .069695085 30 27500 4 0 1 17 46.666666666666664 1 1 2015 .18 30 45000 4 0 1 17 100.00000000000007 1 1 2016 .06896552 32 45000 4 0 1 25 60 1 1 2017 .14180991 32 45000 4 0 1 23 100.00000000000007 1 1 2015 .23148148 52 67500 4 1 1 20 200.00000000000014 1 1 2016 .2897196 52 67500 4 1 1 21 360.0000000000003 1 1 2017 .20763187 53 67500 4 1 1 19 340.0000000000003 1 1 2015 .09425198 46 162500 3 1 1 17 554.8214290000002 1 1 2016 .06666667 47 112500 3 1 1 22 180.00000000000006 1 1 2017 .4494983 48 112500 3 1 1 24 120.00000000000001 1 1 2015 0 31 67500 3 1 1 20 20 1 1 2016 .12244898 33 67500 3 1 1 22 160 1 1 2017 .125 34 67500 3 1 1 20 40 1 1 2015 .3865514 56 67500 2 1 0 29 3892.8854616688204 1 1 2016 .25685653 58 67500 2 1 0 19 126.96428580000003 1 1 2017 .2 59 87500 2 1 0 19 213.92857160000003 1 1 2015 .3388633 58 32500 2 1 0 25 195.66964305000005 1 1 2016 .4044944 60 32500 2 1 0 22 200.00000000000014 1 1 2017 .4013378 61 32500 2 1 0 22 200.00000000000003 1 1 2015 .1178344 30 112500 3 1 1 21 33.33333333333334 1 1 2016 .012800976 32 112500 3 1 1 21 25.000000000000018 1 1 2017 .01222494 33 112500 3 1 1 22 41.6666666666667 1 1 2015 .522196 59 67500 2 1 0 15 1739.2857159999999 1 1 2016 .52024233 61 67500 2 1 0 23 521.7857148000002 1 1 2015 . 69 8750 1 1 . . . . 0 2016 1 69 8750 1 1 0 12 130.44642870000007 0 1 2017 1 71 8750 1 1 0 17 173.92857160000003 1 1 2015 0 53 87500 3 1 1 25 53.33333333333333 1 1 2016 .1923077 54 67500 3 1 0 21 20 1 1 2017 .06060606 55 87500 3 1 0 26 33.33333333333333 1 1 2015 .4244186 37 13750 3 0 0 23 180.00000000000003 1 1 2016 .17261343 39 8750 3 0 0 23 213.92857160000003 1 1 2017 .15873533 40 11250 3 0 0 21 173.92857160000003 1 1 end label values educat educat_label label def educat_label 1 "no diploma", modify label def educat_label 2 "high school", modify label def educat_label 3 "graduate", modify label def educat_label 4 "post graduate", modify label values male male_label label def male_label 0 "female", modify label def male_label 1 "male", modify label values credit credit_label label def credit_label 0 "no credit card", modify label def credit_label 1 "credit card owner", modify
0 Response to Problem with Dependent variables measured as Proportions & Interpreting coefficients
Post a Comment