I am using panel data and I am trying to run a logistic regression with a binary dependent variable. The dependent variable is a dummy variable taking values 1 if respondent is a heavy cash user and 0 if they are not. I am trying to estimate the probability that changes in age, income and education produce certain outcome. (not sure if a worded that correctly)
I used the following code and attach the data example:
Code:
logit cashusage age incometh i.educat male credit rating holdings if sample==1, robust cluster(newID)
Code:
logistic cashusage age incometh i.educat male credit rating holdings if sample==1, robust cluster(newID)
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(newID year cashusage) double age float(incometh educat male) double credit float rating double holdings float sample 1 2015 0 31 112.5 4 1 1 20 108.33333333333341 1 1 2016 1 32 112.5 4 1 1 21 20 1 1 2017 0 34 112.5 4 1 1 24 969.6428580000008 1 2 2015 0 66 27.5 4 0 1 21 300.0000000000001 1 2 2016 0 67 17.5 4 0 1 22 180.00000000000006 1 2 2017 0 68 17.5 4 0 1 23 280 1 3 2016 0 41 112.5 3 1 1 29 0 1 3 2017 1 42 112.5 3 1 1 25 80 1 4 2015 0 25 32.5 2 1 0 25 82.5 1 4 2016 0 26 37.5 2 1 0 26 11.666666666666664 1 4 2017 0 27 37.5 2 1 1 24 973.9285715999991 1 5 2015 1 53 37.5 3 0 1 21 130.44642870000004 1 5 2016 0 55 32.5 3 0 1 23 80.00000000000001 1 5 2017 1 56 22.5 3 0 1 22 60.00000000000001 1 6 2015 0 26 55 4 0 1 20 80 1 6 2016 0 28 55 4 0 1 20 20 1 7 2015 0 83 112.5 3 1 1 22 1304.4642869999998 1 7 2016 0 84 112.5 3 1 1 18 600 1 7 2017 0 85 112.5 3 1 1 20 300 0 8 2015 0 38 112.5 3 1 1 14 83.33333333333327 1 8 2016 0 40 162.5 3 1 1 17 85.73735572900041 1 8 2017 0 41 162.5 3 1 1 15 199.99999999999994 1 9 2015 1 57 22.5 2 0 1 29 80 1 9 2016 0 58 22.5 2 0 1 28 200.00000000000014 1 9 2017 1 59 22.5 2 0 1 29 13.333333333333336 1 10 2015 0 57 162.5 4 1 1 22 869.6428579999998 1 10 2016 0 58 55 4 1 1 23 710.3417382269064 1 10 2017 0 59 45 4 1 1 21 869.6428579999998 1 11 2015 1 44 87.5 3 1 1 23 434.82142900000036 1 11 2016 1 46 87.5 3 1 1 23 434.82142900000036 1 11 2017 1 47 87.5 3 1 1 23 500.00000000000045 1 12 2015 0 54 162.5 3 1 1 21 150.0000000000001 1 12 2016 0 56 162.5 3 1 1 22 40 1 12 2017 0 57 162.5 3 1 1 24 60.00000000000001 1 13 2015 0 64 17.5 3 0 1 16 100.00000000000007 1 13 2016 0 66 17.5 3 0 1 22 708.333333333333 1 13 2017 0 67 11.25 3 0 1 19 300 1 14 2015 1 48 6.25 3 0 0 24 2174.107145 1 14 2016 1 49 8.75 3 0 0 30 1779.2857159999999 0 14 2017 1 50 8.75 3 0 0 24 521.7857148000004 1 15 2015 0 54 112.5 3 0 1 24 257.4107145000001 1 15 2017 1 57 112.5 3 0 1 16 . 0 16 2015 0 56 162.5 3 1 1 19 200.00000000000014 1 16 2016 0 58 162.5 3 1 1 22 100.00000000000006 1 16 2017 0 58 162.5 3 1 1 20 100.00000000000007 1 17 2015 0 53 67.5 2 1 1 25 373.92857160000017 1 17 2016 1 55 67.5 2 1 0 19 240.00000000000014 1 18 2015 0 47 162.5 3 0 1 19 33.33333333333334 1 18 2017 0 50 162.5 3 0 1 14 100.00000000000007 1 19 2015 0 49 67.5 4 1 1 21 23.333333333333336 1 19 2016 0 51 67.5 4 1 1 19 40 1 19 2017 0 52 67.5 4 1 1 26 80 1 20 2015 0 62 87.5 2 1 1 24 280.8928574000001 1 20 2016 0 64 112.5 2 1 1 24 180.00000000000006 1 20 2017 0 64 112.5 2 1 1 23 146.96428580000003 1 21 2015 0 64 8.75 3 0 1 16 173.92857160000003 1 21 2016 1 65 8.75 3 0 1 23 95.29761913333337 1 21 2017 1 66 8.75 3 0 1 17 120 1 22 2016 1 50 32.5 2 1 1 25 782.6785722000002 1 22 2017 1 51 32.5 2 1 1 22 360.0000000000001 1 23 2015 0 46 162.5 4 1 1 19 20 1 23 2017 0 49 162.5 4 1 1 20 80 1 24 2015 0 44 87.5 3 1 1 20 1600 1 24 2016 1 45 112.5 3 1 1 20 120.00000000000001 1 24 2017 0 46 112.5 3 1 1 16 100.00000000000007 1 25 2015 0 28 2.5 4 0 1 16 260 1 25 2016 0 29 17.5 4 0 1 21 80 1 25 2017 0 30 27.5 4 0 1 17 46.666666666666664 1 26 2015 0 30 45 4 0 1 17 100.00000000000007 1 26 2016 0 32 45 4 0 1 25 60 1 26 2017 0 32 45 4 0 1 23 100.00000000000007 1 27 2015 0 52 67.5 4 1 1 20 200.00000000000014 1 27 2016 0 52 67.5 4 1 1 21 360.0000000000003 1 27 2017 0 53 67.5 4 1 1 19 340.0000000000003 1 28 2015 0 46 162.5 3 1 1 17 554.8214290000002 1 28 2016 0 47 112.5 3 1 1 22 180.00000000000006 1 28 2017 1 48 112.5 3 1 1 24 120.00000000000001 1 29 2015 0 31 67.5 3 1 1 20 20 1 29 2016 0 33 67.5 3 1 1 22 160 1 29 2017 0 34 67.5 3 1 1 20 40 1 30 2015 1 56 67.5 2 1 0 29 3892.8854616688204 1 30 2016 0 58 67.5 2 1 0 19 126.96428580000003 1 30 2017 0 59 87.5 2 1 0 19 213.92857160000003 1 31 2015 1 58 32.5 2 1 0 25 195.66964305000005 1 31 2016 1 60 32.5 2 1 0 22 200.00000000000014 1 31 2017 1 61 32.5 2 1 0 22 200.00000000000003 1 32 2015 0 30 112.5 3 1 1 21 33.33333333333334 1 32 2016 0 32 112.5 3 1 1 21 25.000000000000018 1 32 2017 0 33 112.5 3 1 1 22 41.6666666666667 1 33 2015 1 59 67.5 2 1 0 15 1739.2857159999999 1 33 2016 1 61 67.5 2 1 0 23 521.7857148000002 1 34 2015 1 69 8.75 1 1 . . . 0 34 2016 1 69 8.75 1 1 0 12 130.44642870000007 1 34 2017 1 71 8.75 1 1 0 17 173.92857160000003 1 35 2015 0 53 87.5 3 1 1 25 53.33333333333333 1 35 2016 0 54 67.5 3 1 0 21 20 1 35 2017 0 55 87.5 3 1 0 26 33.33333333333333 1 36 2015 1 37 13.75 3 0 0 23 180.00000000000003 1 36 2016 0 39 8.75 3 0 0 23 213.92857160000003 1 36 2017 0 40 11.25 3 0 0 21 173.92857160000003 1 end label values newID newID label def newID 1 "140100007", modify label def newID 2 "140100010", modify label def newID 3 "140100035", modify label def newID 4 "140100038", modify label def newID 5 "140100047", modify label def newID 6 "140100048", modify label def newID 7 "140100055", modify label def newID 8 "140100072", modify label def newID 9 "140100081", modify label def newID 10 "140100108", modify label def newID 11 "140100116", modify label def newID 12 "140100125", modify label def newID 13 "140100143", modify label def newID 14 "140100144", modify label def newID 15 "140100160", modify label def newID 16 "140100168", modify label def newID 17 "140100175", modify label def newID 18 "140100179", modify label def newID 19 "140100183", modify label def newID 20 "140100236", modify label def newID 21 "140100244", modify label def newID 22 "140100288", modify label def newID 23 "140100295", modify label def newID 24 "140100299", modify label def newID 25 "140100300", modify label def newID 26 "140100307", modify label def newID 27 "140100310", modify label def newID 28 "140100317", modify label def newID 29 "140100324", modify label def newID 30 "140100329", modify label def newID 31 "140100333", modify label def newID 32 "140100335", modify label def newID 33 "140100341", modify label def newID 34 "140100346", modify label def newID 35 "140100378", modify label def newID 36 "140100414", modify label values educat educat_label label def educat_label 1 "no diploma", modify label def educat_label 2 "high school", modify label def educat_label 3 "graduate", modify label def educat_label 4 "post graduate", modify label values male male_label label def male_label 0 "female", modify label def male_label 1 "male", modify label values credit credit_label label def credit_label 0 "no credit card", modify label def credit_label 1 "credit card owner", modify
Questions:
1. What do the iterations mean when I run this regression?
2. How can I correctly interpret the coefficient on age income and i.educat?
As far as I understand:
- If the odds ratio for age is 1.01 then “A one year increase in age is associated with a increase odds of being a heavy cash user by a factor of 1.01”
- If the odds ratio for high school in i.educat then "The odds of being a heavy cash user is 9.79 times higher for those with a high school diploma those with no diploma
- If the odds ratio for income is 0.97 then “A one thousand dollar increase in income is associated with decreased odds of being a heavy cash user by a factor of 0.97”
- I say “decreased odds” if the coefficient from the logit regression indicates a negative relationship. Although, i think I am getting confused as to when I should say “increased vs decreased odds”.
- I say “by a factor of X” if the odds ratio value is X
4. Should I be including i.year as I have done in OLS estimation?
I am only used to performing OLS estimation to I feel somewhat out of depth here. Any extra advice would be really useful. Thanks!
0 Response to Binary Logit Regression - Interpreting Results
Post a Comment