I want to estimate the effect of retirement on the 'cesd-score' (which indicates someones mental health, using a panel dataset and the first difference model:
reg d.cesd d.retired d.age d.female d.education d.mstat2 d.mstat3 d.mstat4 d.white
My question is: should I include the constant or not? What do I base my decision on?
My data:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input long id byte(wave education mstat) int age byte cesd float(female white retired) 3010 1 12 1 56 . 0 1 0 3010 2 12 1 58 0 0 1 0 3010 3 12 1 60 3 0 1 0 3010 4 12 1 62 3 0 1 0 3010 5 12 1 64 1 0 1 0 3010 6 12 1 66 1 0 1 0 3010 7 12 1 68 0 0 1 0 3010 8 12 1 70 0 0 1 1 3010 9 12 1 72 0 0 1 1 3010 10 12 1 74 0 0 1 1 3010 11 12 1 76 0 0 1 1 10001010 2 12 4 55 4 0 1 1 10001010 3 12 4 57 1 0 1 0 10001010 4 12 4 58 5 0 1 0 10001010 5 12 4 60 1 0 1 1 10001010 6 12 4 62 1 0 1 1 10001010 7 12 4 64 1 0 1 1 10001010 8 12 4 66 1 0 1 1 10001010 9 12 4 69 1 0 1 1 10001010 10 12 4 71 1 0 1 1 10001010 11 12 4 72 1 0 1 1 10001010 12 12 4 74 0 0 1 1 10003020 1 16 1 58 . 0 1 0 10003020 2 16 1 60 .m 0 1 0 10003020 3 16 1 62 .m 0 1 0 10003020 4 16 1 64 .m 0 1 1 10003030 1 16 1 36 . 1 1 0 10003030 2 16 1 38 1 1 1 0 10003030 3 16 1 40 3 1 1 0 10003030 4 16 1 42 3 1 1 0 10003030 6 16 3 46 1 1 1 0 10003030 8 16 3 50 4 1 1 1 10003030 10 16 3 54 0 1 1 1 10003030 11 16 3 56 0 1 1 1 10003030 12 16 2 58 1 1 1 1 10083010 4 10 1 59 2 0 0 0 10083010 5 10 1 61 1 0 0 0 10083010 6 10 1 63 0 0 0 1 10083010 7 10 1 65 0 0 0 1 10083010 8 10 1 67 0 0 0 1 10083010 9 10 1 69 1 0 0 1 10094010 1 12 3 58 . 1 0 0 10114010 1 12 4 55 . 1 0 0 10114010 2 12 4 56 2 1 0 1 10114010 3 12 4 58 4 1 0 1 10114010 4 12 4 60 0 1 0 1 10114010 5 12 4 62 1 1 0 1 10124011 5 12 1 100 .m 0 0 0 10155010 1 7 2 53 . 1 0 0 10155010 2 7 2 55 1 1 0 0 10155010 3 7 2 57 0 1 0 0 10155010 4 7 2 59 1 1 0 0 10225010 1 8 4 57 . 1 0 0 10225010 2 8 4 59 7 1 0 0 10225010 3 8 4 61 8 1 0 1 10225010 4 8 4 63 5 1 0 1 10225010 5 8 4 65 2 1 0 1 10225010 6 8 4 67 1 1 0 1 10225010 7 8 4 69 1 1 0 1 10225010 8 8 4 71 0 1 0 1 10225010 9 8 4 73 1 1 0 1 10225010 10 8 4 76 2 1 0 1 10225010 11 8 4 77 2 1 0 1 10225010 12 8 4 79 4 1 0 1 10240010 1 9 2 53 . 0 1 0 10240010 2 9 2 55 1 0 1 0 10240010 6 9 2 63 8 0 1 1 10325020 3 14 1 57 0 1 1 0 10325020 4 14 1 59 0 1 1 0 10325020 5 14 1 60 1 1 1 0 10325020 6 14 1 63 0 1 1 1 10325020 7 14 1 65 .m 1 1 1 10325020 11 14 3 73 0 1 1 1 10325020 12 14 3 74 0 1 1 1 10346010 1 11 4 52 . 0 1 0 10372010 1 10 4 56 . 1 0 0 10372010 2 10 4 58 4 1 0 0 10372010 3 10 4 60 6 1 0 0 10372010 4 10 4 62 3 1 0 0 10372010 5 10 4 64 6 1 0 1 10372010 6 10 4 66 5 1 0 1 10372010 7 10 4 68 5 1 0 1 10372010 8 10 4 70 6 1 0 1 10372010 9 10 4 72 2 1 0 1 10372010 10 10 4 75 1 1 0 1 10372010 11 10 4 76 4 1 0 1 10372010 12 10 4 78 3 1 0 1 10378010 1 16 4 53 . 1 0 0 10378010 2 16 4 54 0 1 0 0 10378010 4 16 1 58 5 1 0 0 10378010 5 16 4 60 1 1 0 0 10378010 6 16 4 62 1 1 0 1 10378010 7 16 1 64 1 1 0 1 10394010 5 16 1 59 3 0 1 0 10394010 8 16 1 65 0 0 1 0 10404010 1 12 3 52 . 1 1 0 10404010 2 12 2 54 1 1 1 0 10404010 3 12 2 56 3 1 1 0 10404010 4 12 3 58 0 1 1 0 10404010 5 12 3 60 0 1 1 0 end label values education EDYRS label values mstat marital label def marital 1 "Married or in partnership", modify label def marital 2 "Separated or divorced", modify label def marital 3 "Widowed", modify label def marital 4 "Single", modify
0 Response to including a constant in a first difference mdoel
Post a Comment