I am trying to analyze the impact of minimum wages on employment (divided into formal sector employment and informal sector employment) but the equation for informal sector employment failed to converge despite giving me results.
I use the exact same independent variables for all of my equations which consist of: minimum wage, educational attainment (no. of people with a high school degree and a college degree or higher), population, GDP, and productivity.
The weight matrix I use is an inverse distance weight matrix.
The command I use is XSMLE and I am using Stata 15.1.
The results I obtain for the formal sector employment equation are as expected.
However, not so for informal sector employment.
The results I get (with informal sector employment as the dependent variable) are as follows:
Code:
. xsmle logtotinf logrealmw loglagrealmw loghs logcollege logpop loggdp logprod, wmat(W) model(sdm) fe type(both) vce(robust) effects no > log dlag(1) Warning: All regressors will be spatially lagged convergence not achieved Computing marginal effects standard errors using MC simulation... Dynamic SDM with spatial and time fixed-effects Number of obs = 364 Group variable: province Number of groups = 26 Time variable: year Panel length = 14 R-sq: within = 0.5431 between = 0.9600 overall = 0.9534 Mean of fixed-effects = 1.6819 Log-pseudolikelihood = 345.4902 (Std. Err. adjusted for 26 clusters in province) ------------------------------------------------------------------------------ | Robust logtotinf | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- Main | logtotinf | L1. | .2285767 .0833368 2.74 0.006 .0652395 .3919138 | logrealmw | -.1383967 .0564361 -2.45 0.014 -.2490093 -.0277841 loglagrealmw | .0791953 .0413412 1.92 0.055 -.001832 .1602225 loghs | -.1067864 .0541804 -1.97 0.049 -.212978 -.0005948 logcollege | -.0435969 .0201391 -2.16 0.030 -.0830688 -.004125 logpop | -.3501759 .1223771 -2.86 0.004 -.5900305 -.1103212 loggdp | .989117 .0997162 9.92 0.000 .7936768 1.184557 logprod | -1.006062 .0899846 -11.18 0.000 -1.182429 -.8296957 -------------+---------------------------------------------------------------- Wx | logrealmw | .177353 .1455446 1.22 0.223 -.1079092 .4626152 loglagrealmw | -.1289434 .1083653 -1.19 0.234 -.3413355 .0834487 loghs | -.0052061 .1053096 -0.05 0.961 -.2116092 .2011969 logcollege | .0988331 .0559543 1.77 0.077 -.0108354 .2085015 logpop | .6727621 .1933257 3.48 0.001 .2938508 1.051673 loggdp | -.5628967 .2596894 -2.17 0.030 -1.071879 -.0539148 logprod | .5364926 .2488869 2.16 0.031 .0486833 1.024302 -------------+---------------------------------------------------------------- Spatial | rho | .1333972 .0772801 1.73 0.084 -.0180691 .2848635 -------------+---------------------------------------------------------------- Variance | sigma2_e | .0013607 .0002243 6.07 0.000 .000921 .0018004 -------------+---------------------------------------------------------------- SR_Direct | logrealmw | -.1380869 .0550549 -2.51 0.012 -.2459925 -.0301814 loglagrealmw | .0800526 .0412876 1.94 0.053 -.0008696 .1609748 loghs | -.1089771 .0523142 -2.08 0.037 -.2115111 -.0064431 logcollege | -.0411118 .0198492 -2.07 0.038 -.0800156 -.0022081 logpop | -.3357686 .1186676 -2.83 0.005 -.5683529 -.1031843 loggdp | .9775235 .1037488 9.42 0.000 .7741796 1.180867 logprod | -.9971035 .0874844 -11.40 0.000 -1.16857 -.8256373 -------------+---------------------------------------------------------------- SR_Indirect | logrealmw | .1704475 .1635648 1.04 0.297 -.1501337 .4910287 loglagrealmw | -.1263678 .1234965 -1.02 0.306 -.3684165 .1156809 loghs | -.0279886 .114148 -0.25 0.806 -.2517145 .1957373 logcollege | .1077805 .0666324 1.62 0.106 -.0228167 .2383776 logpop | .7077182 .2437262 2.90 0.004 .2300237 1.185413 loggdp | -.4864988 .2959097 -1.64 0.100 -1.066471 .0934736 logprod | .4553418 .2817799 1.62 0.106 -.0969366 1.00762 -------------+---------------------------------------------------------------- SR_Total | logrealmw | .0323606 .193925 0.17 0.867 -.3477255 .4124467 loglagrealmw | -.0463152 .1467272 -0.32 0.752 -.3338952 .2412648 loghs | -.1369657 .1353617 -1.01 0.312 -.4022697 .1283383 logcollege | .0666686 .0734777 0.91 0.364 -.0773451 .2106824 logpop | .3719496 .3191983 1.17 0.244 -.2536676 .9975669 loggdp | .4910247 .3686951 1.33 0.183 -.2316044 1.213654 logprod | -.5417618 .3247287 -1.67 0.095 -1.178218 .0946947 -------------+---------------------------------------------------------------- LR_Direct | logrealmw | -.1782951 .0719692 -2.48 0.013 -.3193521 -.0372381 loglagrealmw | .1029545 .0540598 1.90 0.057 -.0030009 .2089098 loghs | -.1417304 .068313 -2.07 0.038 -.2756213 -.0078394 logcollege | -.0523573 .0259302 -2.02 0.043 -.1031795 -.0015351 logpop | -.4295871 .1556824 -2.76 0.006 -.7347191 -.1244551 loggdp | 1.264475 .1364494 9.27 0.000 .9970396 1.531911 logprod | -1.290258 .1146382 -11.26 0.000 -1.514944 -1.065571 -------------+---------------------------------------------------------------- LR_Indirect | logrealmw | .2181034 .2245681 0.97 0.331 -.222042 .6582489 loglagrealmw | -.1652417 .1692888 -0.98 0.329 -.4970417 .1665583 loghs | -.0452704 .1559706 -0.29 0.772 -.3509673 .2604264 logcollege | .1441967 .092079 1.57 0.117 -.0362748 .3246681 logpop | .9405098 .3421913 2.75 0.006 .2698272 1.611192 loggdp | -.6021628 .3991603 -1.51 0.131 -1.384503 .180177 logprod | .5577977 .3772176 1.48 0.139 -.1815351 1.297131 -------------+---------------------------------------------------------------- LR_Total | logrealmw | .0398083 .2655799 0.15 0.881 -.4807187 .5603353 loglagrealmw | -.0622872 .2007483 -0.31 0.756 -.4557467 .3311722 loghs | -.1870008 .1859583 -1.01 0.315 -.5514723 .1774707 logcollege | .0918394 .1018197 0.90 0.367 -.1077236 .2914023 logpop | .5109227 .4439137 1.15 0.250 -.3591322 1.380978 loggdp | .6623126 .4978059 1.33 0.183 -.313369 1.637994 logprod | -.73246 .4369807 -1.68 0.094 -1.588926 .1240064 ------------------------------------------------------------------------------ .
When I omit time fixed effects, the results are okay, but R-sq actually increased which is strange.
I also don't actually want to omit time fe because I believe there are time effects which may influence the employment levels. When I use standard fixed effects estimation (not a spatial model) and test for the joint significance of the time dummies, the results show that they are jointly significant. So, I would like to keep the time fixed effects in my model.
My questions are:
1. are the above results reliable (despite having the "convergence not achieved" message)?
2. What can I do to obtain convergence? I have tried the option "difficult" but nothing happened.
Any inputs, comments, and suggestions would be greatly appreciated.
Thank you so much in advance,
Tifani
0 Response to Dynamic Spatial Panel Model with XSMLE "Convergence Not Achieved"
Post a Comment