I am having some trouble in estimating a difference-in-differences model.
In particular, I am trying to see whether prices of some products increased after a merger in the sector. I am using as a treatment group the markets in which these products are sold and as control the ones in which they are not sold (where the merger should not have had any effect).
I defined three variables, which represent the time, the group variable and the interaction term.
Code:
*Treatment indicator gen treated = 0 replace treated = 1 if group == "T" *Time indicator. 0 if pre-merger, 1 if post-merger gen time = 0 replace time = 1 if year >= 2015 *Interaction term gen time_treated = time*treated
Code:
*DiD estimation reg price time treated time_treated [fweight=purchasers]
The result is the following:
Code:
. reg price time treated time_treated [fweight=purchasers] Source | SS df MS Number of obs = 222396351 -------------+---------------------------------- F(3, 222396347) > 99999.00 Model | 6.9099e+10 3 2.3033e+10 Prob > F = 0.0000 Residual | 5.7580e+12 222396347 25890.8053 R-squared = 0.0119 -------------+---------------------------------- Adj R-squared = 0.0119 Total | 5.8271e+12 222396350 26201.508 Root MSE = 160.91 ------------------------------------------------------------------------------ price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | -3.216122 .07007 -45.90 0.000 -3.353457 -3.078787 treated | 56.90151 .0426874 1332.98 0.000 56.81784 56.98517 time_treated | -.5140701 .074221 -6.93 0.000 -.6595407 -.3685996 _cons | 176.1494 .0403794 4362.36 0.000 176.0702 176.2285 ------------------------------------------------------------------------------
Code:
. *Log transformation . gen ln_price = ln(price) . . reg ln_price time treated time_treated [fweight=purchasers] Source | SS df MS Number of obs = 222396351 -------------+---------------------------------- F(3, 222396347) > 99999.00 Model | 1543037.17 3 514345.723 Prob > F = 0.0000 Residual | 62534956.6 222396347 .281186978 R-squared = 0.0241 -------------+---------------------------------- Adj R-squared = 0.0241 Total | 64077993.8 222396350 .288125204 Root MSE = .53027 ------------------------------------------------------------------------------ ln_price | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | -.0339575 .0002309 -147.05 0.000 -.0344101 -.0335049 treated | .2640624 .0001407 1877.08 0.000 .2637867 .2643381 time_treated | .002573 .0002446 10.52 0.000 .0020936 .0030524 _cons | 5.04016 .0001331 3.8e+04 0.000 5.039899 5.040421 ------------------------------------------------------------------------------
Thanks for your help!
0 Response to Log transformed dependent variable in DD
Post a Comment