My questions is about Walds test and how to use it properly?
I have performed some mixed linear regression models like the following.
Code:
webuse auto
Code:
mixed price mpg weight i.rep78 || foreign:
HTML Code:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -628.14785
Iteration 1: log likelihood = -628.14785
Computing standard errors:
Mixed-effects ML regression Number of obs = 69
Group variable: foreign Number of groups = 2
Obs per group:
min = 21
avg = 34.5
max = 48
Wald chi2(3) = 63.90
Log likelihood = -628.14785 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
price | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mpg | 17.59927 75.57848 0.23 0.816 -130.5318 165.7304
weight | 3.387514 .6326358 5.35 0.000 2.147571 4.627458
rep78 | 206.673 321.9493 0.64 0.521 -424.3361 837.6821
_cons | -4599.017 3437.865 -1.34 0.181 -11337.11 2139.075
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+------------------------------------------------
foreign: Identity |
var(_cons) | 2526074 2889011 268501.8 2.38e+07
-----------------------------+------------------------------------------------
var(Residual) | 4338805 751500 3089856 6092590
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 8.00 Prob >= chibar2 = 0.0023
Code:
mixed price mpg weight i.rep78 || foreign: , coeflegend
HTML Code:
Output left out on purpose
Code:
test _b[price:mpg] = _b[price:mpg]+_b[price:2.rep78] =_b[price:mpg]+_b[price:3.rep78] =_b[price:mpg]+_b[price:4.rep78] , mtest(bon)
HTML Code:
( 1) - [price]2.rep78 = 0
( 2) - [price]3.rep78 = 0
( 3) - [price]4.rep78 = 0
---------------------------------------
| chi2 df p
-------+-------------------------------
(1) | 0.12 1 1.0000 #
(2) | 0.35 1 1.0000 #
(3) | 0.19 1 1.0000 #
-------+-------------------------------
all | 0.49 3 0.9222
---------------------------------------
# Bonferroni-adjusted p-values
I prefer to avoid the likelihood ratio test modellings.
best regards
0 Response to Walds test - how to use it properly?
Post a Comment