I'm starting this thread because I seem to be having some trouble with my lag (and possibly more).
As stated in an other thread, I'm analyzing the effects of the exchange rates on Swiss watch exports, and Swiss total exports. The panel contains 10 countries its time is quarterly from 2006Q1 to 2017Q4.
I created lags on the Exchange rates n-1, n-2, n-3.
Due to strong variations between various currency pairs, I standardized each of them with "std".
Quick overview of my 480 line data:
Array
So after using "std" to standardize my exchange rates "exrate2", I also created three lags for "exrate2_L1" "exrate2_L2" "exrate2_L3". (instead of lagging the export numbers)
I attempted conducting an xtreg and got the following:
Code:
. xtset countrynum qdate
panel variable: countrynum (strongly balanced)
time variable: qdate, 2006q1 to 2017q4
delta: 1 quarter
. xtreg Watchexports exrate2
Random-effects GLS regression Number of obs = 480
Group variable: countrynum Number of groups = 10
R-sq: Obs per group:
within = 0.1734 min = 48
between = 0.0016 avg = 48.0
overall = 0.0417 max = 48
Wald chi2(1) = 98.62
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
Watchexports | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
exrate2 | -41.01679 4.130305 -9.93 0.000 -49.11204 -32.92154
_cons | 331.0792 61.16525 5.41 0.000 211.1975 450.9608
-------------+----------------------------------------------------------------
sigma_u | 193.18872
sigma_e | 89.635446
rho | .8228582 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Code:
. xtreg Watchexports exrate2 exrate2_L1 exrate2_L2 exrate2_L3
Random-effects GLS regression Number of obs = 450
Group variable: countrynum Number of groups = 10
R-sq: Obs per group:
within = 0.1774 min = 45
between = 0.4358 avg = 45.0
overall = 0.0486 max = 45
Wald chi2(4) = 92.36
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
Watchexports | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
exrate2 | .4325143 12.19669 0.04 0.972 -23.47257 24.3376
exrate2_L1 | -41.41257 19.06705 -2.17 0.030 -78.78329 -4.041838
exrate2_L2 | 7.802177 19.09005 0.41 0.683 -29.61364 45.21799
exrate2_L3 | -8.273314 11.92493 -0.69 0.488 -31.64574 15.09911
_cons | 336.8466 41.79914 8.06 0.000 254.9218 418.7714
-------------+----------------------------------------------------------------
sigma_u | 130.20494
sigma_e | 86.010766
rho | .69620148 (fraction of variance due to u_i)
------------------------------------------------------------------------------
The one including lagged values has shockingly high P values. So there must be something wrong with the way I'm proceeding.
Really hard for me to interpret the results when I know I'm doing something wrong in the process...
0 Response to Using the "lag" variable for a panel regression
Post a Comment