Code:
webuse nlswork, clear xtset idcode //OLS regression regress ln_wage age collgrad //fixed-effects linear regression xtreg ln_wage age collgrad, fe //gmm estimation, results match these of OLS, how to include idcode fixed-effects to match xtreg? gmm (ln_wage - {xb: age collgrad _cons}), instruments(age collgrad)
Of course, in this simple example, I can use `xtreg` but I need `gmm` for a more involved example where I have multiple equations with endogenous variables in a panel data.
The results of the code above are pasted below.
Code:
. webuse nlswork, clear (National Longitudinal Survey. Young Women 14-26 years of age in 1968) . xtset idcode panel variable: idcode (unbalanced) . //OLS regression . regress ln_wage age collgrad Source | SS df MS Number of obs = 28,510 -------------+---------------------------------- F(2, 28507) = 2965.19 Model | 1122.22339 2 561.111694 Prob > F = 0.0000 Residual | 5394.46676 28,507 .189233057 R-squared = 0.1722 -------------+---------------------------------- Adj R-squared = 0.1721 Total | 6516.69015 28,509 .228583611 Root MSE = .43501 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0162795 .0003895 41.79 0.000 .015516 .017043 collgrad | .3988395 .0069794 57.15 0.000 .3851595 .4125194 _cons | 1.135051 .011479 98.88 0.000 1.112552 1.157551 ------------------------------------------------------------------------------ . //fixed-effects linear regression . xtreg ln_wage age collgrad, fe note: collgrad omitted because of collinearity Fixed-effects (within) regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1026 min = 1 between = 0.0877 avg = 6.1 overall = 0.0774 max = 15 F(1,23799) = 2720.20 corr(u_i, Xb) = 0.0314 Prob > F = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0181349 .0003477 52.16 0.000 .0174534 .0188164 collgrad | 0 (omitted) _cons | 1.148214 .0102579 111.93 0.000 1.128107 1.16832 -------------+---------------------------------------------------------------- sigma_u | .40635023 sigma_e | .30349389 rho | .64192015 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(4709, 23799) = 8.81 Prob > F = 0.0000 . //gmm estimations, results match these of OLS, how to include idcode fixed-effects? . gmm (ln_wage - {xb: age collgrad _cons}), instruments(age collgrad) Step 1 Iteration 0: GMM criterion Q(b) = 2.8447984 Iteration 1: GMM criterion Q(b) = 7.453e-28 Iteration 2: GMM criterion Q(b) = 8.448e-33 Step 2 Iteration 0: GMM criterion Q(b) = 4.585e-32 Iteration 1: GMM criterion Q(b) = 4.585e-32 (backed up) note: model is exactly identified GMM estimation Number of parameters = 3 Number of moments = 3 Initial weight matrix: Unadjusted Number of obs = 28,510 GMM weight matrix: Robust ------------------------------------------------------------------------------ | Robust | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0162795 .0004112 39.59 0.000 .0154737 .0170854 collgrad | .3988395 .0071752 55.59 0.000 .3847763 .4129026 _cons | 1.135051 .0114914 98.77 0.000 1.112529 1.157574 ------------------------------------------------------------------------------ Instruments for equation 1: age collgrad _cons
0 Response to Estimating fixed-effects panel linear regression using gmm
Post a Comment