Please I'd help for this issue. I run a xtologit model where my dependent variable is exportation ranking from 1 to 3 (where 1 is the best option). The results of the odds ratio are:
HTML Code:
. xtologit RANKING_EXPORT i.CEO_WOMEN i.FEMALE_OWNER LOG_SIZE ROA , nolog or Random-effects ordered logistic regression Number of obs = 2,186 Group variable: IDENT Number of groups = 256 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 8.5 max = 12 Integration method: mvaghermite Integration pts. = 12 Wald chi2(4) = 188.64 Log likelihood = -1187.1172 Prob > chi2 = 0.0000 -------------------------------------------------------------------------------- RANKING_EXPORT | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- | 1.CEO_WOMEN | .4384 .1975547 -1.83 0.067 .1812577 1.060339 1.FEMALE_OWNER | .8843898 .3665757 -0.30 0.767 .3924862 1.992797 LOG_SIZE | .0099495 .0034347 -13.35 0.000 .0050578 .0195725 ROA | .9995997 .0078575 -0.05 0.959 .9843172 1.015119 ---------------+---------------------------------------------------------------- /cut1 | -33.12666 2.379283 -13.92 0.000 -37.78997 -28.46335 /cut2 | -27.62037 2.273256 -12.15 0.000 -32.07587 -23.16486 ---------------+---------------------------------------------------------------- /sigma2_u | 19.18655 2.829527 14.37031 25.61695 -------------------------------------------------------------------------------- LR test vs. ologit model: chibar2(01) = 1663.05 Prob >= chibar2 = 0.0000
However, when I run the marginal effect, for the otcome=1, we can say that if the CEO of the company is a woman, the probability of belonging to the first group in the exportation ranking is 7.6% higher. I notice that these results are contradictories. Please, could someone help me?
Thanks!
HTML Code:
. . margins, dydx(*) predict(pu0 outcome(1))
Average marginal effects Number of obs = 2,322
Model VCE : OIM
Expression : Predicted mean (1.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(1))
dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.CEO_WOMEN | .0766569 .0399485 1.92 0.055 -.0016407 .1549545
LOG_SIZE | .3866462 .0248591 15.55 0.000 .3379232 .4353691
ROA | .000163 .0006111 0.27 0.790 -.0010347 .0013608
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. . margins, dydx(*) predict(pu0 outcome(2))
Average marginal effects Number of obs = 2,322
Model VCE : OIM
Expression : Predicted mean (2.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(2))
dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.CEO_WOMEN | -.0070803 .012385 -0.57 0.568 -.0313544 .0171938
LOG_SIZE | .0028512 .0474311 0.06 0.952 -.0901121 .0958146
ROA | 1.20e-06 .0000202 0.06 0.952 -.0000384 .0000408
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
. . margins, dydx(*) predict(pu0 outcome(3))
Average marginal effects Number of obs = 2,322
Model VCE : OIM
Expression : Predicted mean (3.RANKING_EXPORT), assuming u_i=0, predict(pu0 outcome(3))
dy/dx w.r.t. : 1.CEO_WOMEN LOG_SIZE ROA
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1.CEO_WOMEN | -.0695766 .0319731 -2.18 0.030 -.1322426 -.0069106
LOG_SIZE | -.3894974 .0334593 -11.64 0.000 -.4550764 -.3239183
ROA | -.0001642 .0006144 -0.27 0.789 -.0013684 .0010399
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
0 Response to Contradictory outcome xtologit OR vs margins dydx(*)
Post a Comment