Hi Everyone!

I am trying to estimate the effect of a lagged independent variable on wealth accumulation. Specifically, I am trying to estimate whether changes in the value of several asset/debt categories over 2007 to 2009 (value of equity, home value, etc.) explain future wealth growth. In other words, does a change in asset values over 2007-2009 explain the change in wealth from 2010 through 2019. I have a cohort-year level dataset (255 cohorts 5 panels/years 2007-2019 every 3 years). An example of the data is at the bottom of this post. I am wondering whether the below specification is appropriate for what I am trying to test.

I have tried the following specification:

Code:
reghdfe lnnetworth c.dlnliq0709##i.panel c.dlnequity0709##i.panel c.dlnfixedinc0709##i.panel c.dlncashli0709##i.panel c.dlnretqliq0709##i.panel c.dlnhouses0709##i.panel c.dlnbus0709##i.panel c.dlnedninst0709##i.panel c.dlnvehinst0709##i.panel c.dlnothinst0709##i.panel c.dlnccbal0709##i.panel c.dlnmrthel0709##i.panel [controls], a(cohort) vce(cluster cohort)
Below is a partial view of the results:

Array

My interpretation of the coefficient on dlnliq0709#2013 is that a one standard deviation increase in dlnliq0709 results in a ~4% increase in wealth in 2013 relative to 2007 wealth. Or should this be interpreted as a one sd increase in dlnliq0709 is associated with a ~4% greater increase in wealth relative to the effect of dlnliq0709 on 2007 wealth?

An alternative approach that I was planning on trying was to reshape (wide) into cohort-level data and simply regress the change in wealth from 2010 to 2019 on the asset/debt changes along with cohort-level controls (any obvious problems with this approach?).

Any guidance would be immensely appreciated.

Code:
* Example generated by -dataex-. For more info, type help dataex
clear
input float(cohort panel lnnetworth dlnliq0709 dlnequity0709 dlnfixedinc0709 dlncashli0709 dlnretqliq0709 dlnhouses0709 dlnbus0709 dlninstall0709    dlnccbal0709 dlnmrthel0709 dlnedninst0709 dlnvehinst0709    dlnothinst0709    dlnothloc0709    dlnodebt0709)
113 2007 12.356108   -.8117663  -.6679196 -.03997894  -2.414839  -.7627107   -.22390684   .09321466  .51196074   .7042804   -1.890627           0    -.04455568   .5565164          0   -.7152216
113 2010 12.369104   -.8117663  -.6679196 -.03997894  -2.414839  -.7627107   -.22390684   .09321466  .51196074   .7042804   -1.890627           0    -.04455568   .5565164          0   -.7152216
113 2013 12.067015   -.8117663  -.6679196 -.03997894  -2.414839  -.7627107   -.22390684   .09321466  .51196074   .7042804   -1.890627           0    -.04455568   .5565164          0   -.7152216
113 2016  12.37533   -.8117663  -.6679196 -.03997894  -2.414839  -.7627107   -.22390684   .09321466  .51196074   .7042804   -1.890627           0    -.04455568   .5565164          0   -.7152216
113 2019 12.415668   -.8117663  -.6679196 -.03997894  -2.414839  -.7627107   -.22390684   .09321466  .51196074   .7042804   -1.890627           0    -.04455568   .5565164          0   -.7152216
114 2007 12.860944    .1382894  .50214225 .065634914   .1201632  .55576324     .2047282 .0009744643   .1952882 -.09859852   .07706435    -.099766    .3135726 -.14225069  .21472567   -.3869707
114 2010 12.641363    .1382894  .50214225 .065634914   .1201632  .55576324     .2047282 .0009744643   .1952882 -.09859852   .07706435    -.099766    .3135726 -.14225069  .21472567   -.3869707
114 2013 12.510736    .1382894  .50214225 .065634914   .1201632  .55576324     .2047282 .0009744643   .1952882 -.09859852   .07706435    -.099766    .3135726 -.14225069  .21472567   -.3869707
114 2016  12.70246    .1382894  .50214225 .065634914   .1201632  .55576324     .2047282 .0009744643   .1952882 -.09859852   .07706435    -.099766    .3135726 -.14225069  .21472567   -.3869707
114 2019 12.407745    .1382894  .50214225 .065634914   .1201632  .55576324     .2047282 .0009744643   .1952882 -.09859852   .07706435    -.099766    .3135726 -.14225069  .21472567   -.3869707
115 2007 13.686165   -.4298446 -1.1421677 -.04004299  -.3491879 -1.2077113   -.03302917   -.4818779   -.185182  -.6227583 -.027859643 -.000841175    -.4847591   .3453323 -.11744729  -.12501265
115 2010 13.572906   -.4298446 -1.1421677 -.04004299  -.3491879 -1.2077113   -.03302917   -.4818779   -.185182  -.6227583 -.027859643 -.000841175    -.4847591   .3453323 -.11744729  -.12501265
115 2013 13.558372   -.4298446 -1.1421677 -.04004299  -.3491879 -1.2077113   -.03302917   -.4818779   -.185182  -.6227583 -.027859643 -.000841175    -.4847591   .3453323 -.11744729  -.12501265
115 2016 13.502767   -.4298446 -1.1421677 -.04004299  -.3491879 -1.2077113   -.03302917   -.4818779   -.185182  -.6227583 -.027859643 -.000841175    -.4847591   .3453323 -.11744729  -.12501265
115 2019 13.198543   -.4298446 -1.1421677 -.04004299  -.3491879 -1.2077113   -.03302917   -.4818779   -.185182  -.6227583 -.027859643 -.000841175    -.4847591   .3453323 -.11744729  -.12501265
116 2007 12.017576           0          0          0          0          0            0           0          0          0           0           0    0          0          0           0
116 2010 12.119977           0          0          0          0          0            0           0          0          0           0           0    0          0          0           0
116 2013 11.937418           0          0          0          0          0            0           0          0          0           0           0    0          0          0           0
116 2016  12.01959           0          0          0          0          0            0           0          0          0           0           0    0          0          0           0
116 2019 11.831182           0          0          0          0          0            0           0          0          0           0           0    0          0          0           0
117 2007 11.968186 .0031573025          0          0  1.8498133          0   -.09501783           0  3.2656076  1.6116536  -2.2984762           0    3.2656076          0          0           0
117 2010 10.896545 .0031573025          0          0  1.8498133          0   -.09501783           0  3.2656076  1.6116536  -2.2984762           0    3.2656076          0          0           0
117 2013 11.556764 .0031573025          0          0  1.8498133          0   -.09501783           0  3.2656076  1.6116536  -2.2984762           0    3.2656076          0          0           0
117 2016 12.021815 .0031573025          0          0  1.8498133          0   -.09501783           0  3.2656076  1.6116536  -2.2984762           0    3.2656076          0          0           0
117 2019  11.96965 .0031573025          0          0  1.8498133          0   -.09501783           0  3.2656076  1.6116536  -2.2984762           0    3.2656076          0          0           0
end

**DATA NOTE: the 2007 panel respondents were re-interviewed in 2009, allowing me to compute within-individual changes for the 2007 survey. These changes are then averaged at the cohort level and applied to each cohort for the entire dataset (i.e. not time-variant). Data from 2010-2019 are from later survey panels with a random selection of individuals which is why I am performing this analysis at the cohort level. Cohorts are defined by 3-year birth year, race, and level of education.